Chapter Older adults in the user-centered design process

2010 ◽  
pp. 127-142
10.2196/16862 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e16862
Author(s):  
Curtis Lee Petersen ◽  
Ryan Halter ◽  
David Kotz ◽  
Lorie Loeb ◽  
Summer Cook ◽  
...  

Background Sarcopenia, defined as the age-associated loss of muscle mass and strength, can be effectively mitigated through resistance-based physical activity. With compliance at approximately 40% for home-based exercise prescriptions, implementing a remote sensing system would help patients and clinicians to better understand treatment progress and increase compliance. The inclusion of end users in the development of mobile apps for remote-sensing systems can ensure that they are both user friendly and facilitate compliance. With advancements in natural language processing (NLP), there is potential for these methods to be used with data collected through the user-centered design process. Objective This study aims to develop a mobile app for a novel device through a user-centered design process with both older adults and clinicians while exploring whether data collected through this process can be used in NLP and sentiment analysis Methods Through a user-centered design process, we conducted semistructured interviews during the development of a geriatric-friendly Bluetooth-connected resistance exercise band app. We interviewed patients and clinicians at weeks 0, 5, and 10 of the app development. Each semistructured interview consisted of heuristic evaluations, cognitive walkthroughs, and observations. We used the Bing sentiment library for a sentiment analysis of interview transcripts and then applied NLP-based latent Dirichlet allocation (LDA) topic modeling to identify differences and similarities in patient and clinician participant interviews. Sentiment was defined as the sum of positive and negative words (each word with a +1 or −1 value). To assess utility, we used quantitative assessment questionnaires—System Usability Scale (SUS) and Usefulness, Satisfaction, and Ease of use (USE). Finally, we used multivariate linear models—adjusting for age, sex, subject group (clinician vs patient), and development—to explore the association between sentiment analysis and SUS and USE outcomes. Results The mean age of the 22 participants was 68 (SD 14) years, and 17 (77%) were female. The overall mean SUS and USE scores were 66.4 (SD 13.6) and 41.3 (SD 15.2), respectively. Both patients and clinicians provided valuable insights into the needs of older adults when designing and building an app. The mean positive-negative sentiment per sentence was 0.19 (SD 0.21) and 0.47 (SD 0.21) for patient and clinician interviews, respectively. We found a positive association with positive sentiment in an interview and SUS score (ß=1.38; 95% CI 0.37 to 2.39; P=.01). There was no significant association between sentiment and the USE score. The LDA analysis found no overlap between patients and clinicians in the 8 identified topics. Conclusions Involving patients and clinicians allowed us to design and build an app that is user friendly for older adults while supporting compliance. This is the first analysis using NLP and usability questionnaires in the quantification of user-centered design of technology for older adults.


2020 ◽  
Author(s):  
Jason Fanning ◽  
Amber Brooks ◽  
Edward Ip ◽  
Barbara Nicklas ◽  
W. Jack Rejeski

BACKGROUND Participating in physical activity and minimizing time spent sitting is an effective strategy for managing pain in older adults. Theory-based mHealth tools are integral to effective day-long physical activity interventions, but it is vital that mHealth tools undergo an iterative development process alongside members of the target population to ensure their uptake and use. OBJECTIVE We subjected a preliminary social cognitive smartphone application (Companion App) designed to promote day-long movement to a user centered design process with the assistance of low-active older adults with chronic multisite pain. The Companion App integrates ecological momentary assessments of pain, Fitbit activity monitor data, and smart weight scale data to provide real-time feedback on the relationships between movement, sitting, and pain and to facilitate goal setting and achievement. METHODS We recruited participants (N=5; 71.8 5.54 years old) sequentially to participate in a three-phase iterative design study. First, each participant received a brief orientation to physical activity, was exposed to the application, and engaged in a Think Aloud protocol. Use and usability issues were noted by study staff. The participant then used the app for one week in their daily lives, and then returned to provide feedback. Issues were identified from participant feedback, discussed with the study team, and modified before the next participant began the study. RESULTS Participant interviews yielded feedback in areas related to technology selection and operation, app design/form, and intervention clarity. Regarding technology, the use of the Fitbit activity monitor revealed no issues, but there were barriers to the use of the Fitbit Aria 2 scale, including incompatibility with a widely used home internet router. Switching to a cellular enabled scale alleviated this issue. With regard to form, modifications were made to several key interface elements in response to participant feedback to aid in clarity. Finally, initial participant experiences revealed the need to separate the intervention orientation from the technology orientation to minimize informational load. CONCLUSIONS Our brief user-centered design process produced key changes in our intervention orientation, the form and function of the Companion App, and the technologies that support the app. These are vital elements that are likely to hamper the perceived usefulness and utility of the Companion App in the context of a large trial and eventual public use. We recommend the conduct of such a process any time mHealth is used in research or medicine to account for changing populations and preferences. Moreover, publication of lessons learned can help to establish a foundation of knowledge for designing apps for underserved populations such as older adults. CLINICALTRIAL ClinicalTrials.gov Identifier: NCT03377634


2019 ◽  
Author(s):  
Curtis Lee Petersen ◽  
Ryan Halter ◽  
David Kotz ◽  
Lorie Loeb ◽  
Summer Cook ◽  
...  

BACKGROUND Sarcopenia, defined as the age-associated loss of muscle mass and strength, can be effectively mitigated through resistance-based physical activity. With compliance at approximately 40% for home-based exercise prescriptions, implementing a remote sensing system would help patients and clinicians to better understand treatment progress and increase compliance. The inclusion of end users in the development of mobile apps for remote-sensing systems can ensure that they are both user friendly and facilitate compliance. With advancements in natural language processing (NLP), there is potential for these methods to be used with data collected through the user-centered design process. OBJECTIVE This study aims to develop a mobile app for a novel device through a user-centered design process with both older adults and clinicians while exploring whether data collected through this process can be used in NLP and sentiment analysis METHODS Through a user-centered design process, we conducted semistructured interviews during the development of a geriatric-friendly Bluetooth-connected resistance exercise band app. We interviewed patients and clinicians at weeks 0, 5, and 10 of the app development. Each semistructured interview consisted of heuristic evaluations, cognitive walkthroughs, and observations. We used the Bing sentiment library for a sentiment analysis of interview transcripts and then applied NLP-based latent Dirichlet allocation (LDA) topic modeling to identify differences and similarities in patient and clinician participant interviews. Sentiment was defined as the sum of positive and negative words (each word with a +1 or −1 value). To assess utility, we used quantitative assessment questionnaires—System Usability Scale (SUS) and Usefulness, Satisfaction, and Ease of use (USE). Finally, we used multivariate linear models—adjusting for age, sex, subject group (clinician vs patient), and development—to explore the association between sentiment analysis and SUS and USE outcomes. RESULTS The mean age of the 22 participants was 68 (SD 14) years, and 17 (77%) were female. The overall mean SUS and USE scores were 66.4 (SD 13.6) and 41.3 (SD 15.2), respectively. Both patients and clinicians provided valuable insights into the needs of older adults when designing and building an app. The mean positive-negative sentiment per sentence was 0.19 (SD 0.21) and 0.47 (SD 0.21) for patient and clinician interviews, respectively. We found a positive association with positive sentiment in an interview and SUS score (ß=1.38; 95% CI 0.37 to 2.39; <i>P</i>=.01). There was no significant association between sentiment and the USE score. The LDA analysis found no overlap between patients and clinicians in the 8 identified topics. CONCLUSIONS Involving patients and clinicians allowed us to design and build an app that is user friendly for older adults while supporting compliance. This is the first analysis using NLP and usability questionnaires in the quantification of user-centered design of technology for older adults.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2804
Author(s):  
Silvia Imbesi ◽  
Sofia Scataglini

Smart clothing plays a big role to foster innovation and to. boost health and well-being, improving the quality of the life of people, especially when addressed to niche users with particular needs related to their health. Designing smart apparel, in order to monitor physical and physiological functions in older users, is a crucial asset that user centered design is exploring, balancing needs expressed by the users with technological requirements related to the design process. In this paper, the authors describe a user centered methodology for the design of smart garments based on the evaluation of users’ acceptance of smart clothing. This comparison method can be considered as similar to a simplified version of the quality function deployment tool, and is used to evaluate the general response of each garment typology to different categories of requirements, determining the propensity of the older user to the utilization of the developed product. The suggested methodology aims at introducing in the design process a tool to evaluate and compare developed solutions, reducing complexity in design processes by providing a tool for the comparison of significant solutions, correlating quantitative and qualitative factors.


2021 ◽  
Author(s):  
Jeonghwan Hwang ◽  
Taeheon Lee ◽  
Honggu Lee ◽  
Seonjeong Byun

BACKGROUND Despite the unprecedented performances of deep learning algorithms in clinical domains, full reviews of algorithmic predictions by human experts remain mandatory. Under these circumstances, artificial intelligence (AI) models are primarily designed as clinical decision support systems (CDSSs). However, from the perspective of clinical practitioners, the lack of clinical interpretability and user-centered interfaces block the adoption of these AI systems in practice. OBJECTIVE The aim of this study was to develop an AI-based CDSS for assisting polysomnographic technicians in reviewing AI-predicted sleep staging results. This study proposed and evaluated a CDSS that provides clinically sound explanations for AI predictions in a user-centered fashion. METHODS User needs for the system were identified during interviews with polysomnographic technicians. User observation sessions were conducted to understand the workflow of the practitioners during sleep scoring. Iterative design process was performed to ensure easy integration of the tool into clinical workflows. Then, we evaluated the system with polysomnographic technicians. We measured the improvements in sleep staging accuracies after adopting our tool and assessed qualitatively how the participants perceived and used the tool. RESULTS The user study revealed that technicians desire explanations relevant to key electroencephalogram (EEG) patterns for sleep staging when assessing the correctness of the AI predictions. Here, technicians could evaluate whether AI models properly locate and use those patterns during prediction. Based on this, information in AI models that is closely related to sleep EEG patterns was formulated and visualized during the iterative design process. Furthermore, we developed a different visualization strategy for each pattern based on the way the technicians interpreted the EEG recordings with these patterns during their workflows. Generally, the tool evaluation results from the nine polysomnographic technicians were positive. Quantitatively, technicians achieved better classification performances after reviewing the AI-generated predictions with the proposed system; classification accuracies measured with Macro-F1 scores improved from 60.20 to 62.71. Qualitatively, participants reported that the provided information from the tool effectively supported them, and they were able to develop notable adoption strategies for the tool. CONCLUSIONS Our findings indicate that formulating clinical explanations for automated predictions using the information in the AI with a user-centered design process is an effective strategy for developing a CDSS for sleep staging.


2017 ◽  
Vol 3 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Ekaterina Ivanova ◽  
Michael Minge ◽  
Henning Schmidt ◽  
Manfred Thüring ◽  
Jörg Krüger

Abstract:Robotic therapy devices have been an important part of clinical neurological rehabilitation for several years. Until now such devices are only available for patients receiving therapy inside rehabilitation hospitals. Since patients should continue rehabilitation training after hospital discharge at home, intelligent robotic rehab devices could help to achieve this goal. This paper presents therapeutic requirements and early phases of the user-centered design process of the patient’s work station as part of a novel robot-based system for motor telerehabilitation.


Author(s):  
Jayde King ◽  
John Kleber ◽  
Ashlee Harris ◽  
Barbara Chaparro ◽  
Beth Blickensderfer

General Aviation flight operations have been negatively affected by the slow decreasing weather related accident rate for the last 20 years. Upon further investigation, research suggests, that poor preflight planning and a lack of aviation weather experience and knowledge may be contributing factors to the stagnant weather related accident rate. Our team developed a Preflight Weather Decision Support Tool (PWDST) to help novice pilots access, interpret, and apply weather information. We used a user-centered design process which involved an initial task analysis, low-fidelity prototyping, low-fidelity usability testing, user interviews and expert review. This study assessed and compared the perceived usability, difficulty, and the system assistance satisfaction of the PWDST. Participants (n=9) completed a usability study and a series of surveys during, as well as, after the completion of the preflight planning scenario. A series of Mann-Whitney U Tests were conducted to compare the difference between Private Pilot and Certified Flight Instructors (CFI) perceived usability, difficulty, and system assistance satisfaction ratings. Results indicated, there were no significant differences between group ratings. Overall, both groups reported above average usability, system assistance and low difficulty rating for the PWDST. Future research and possible implications are discussed.


Sign in / Sign up

Export Citation Format

Share Document