Centrifuge study of the bearing capacity increase of a shallow footing due to preloading

2015 ◽  
Vol 77 (11) ◽  
Author(s):  
Helmy Darjanto ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno

The Spider Net System Footing (SNSF) is a raft foundation system that commonly used in Indonesia. It contains a plate, downward ribs system for reinforcement, and the compacted filled soil. The ribs are in longitudinal and transversal, called as settlement rib and in diagonal direction, named as construction rib. This paper explores the load transfer mechanism along the plate, the ribs, filled soil and the base soil under the footing system. The mechanism is investigated by conducting full scale static load test on SNSF. Strain gauges were installed to monitor the strain increment of each footing elements during loading. 3D numerical analysis was also conducted to verify the experimental results. To analyze the results, Load-Ultimate Ratio Factor (L-URF) was proposed. L-URF was a ratio between ultimate soil bearing capacity of the SNSF and the applied loading at specific element. Higher the L-URF value means higher loading applied at its associate element. Both experimental and numerical results show that at the first stage the loading was fully carried out by the tip of the ribs and transferred to the soil stratum under the footing system. Increasing the loading, the ribs, plate, and filled soil altogether sustain the loading and then transferred to the soil stratum below the footing system. The results also affirm that SNSF generate higher bearing capacity compare with simple shallow footing.  


2020 ◽  
Vol 53 (2D) ◽  
pp. 1-18
Author(s):  
Bui Truong Son

The point foundation method is the head enlarged cement deep mixing columns with high-quality control which can be used for soft ground improvement. The article aims to present the application of this method to treat soft soil for the foundation of Samse Vina factory, Ninh Binh province. The thickness of soft soil varies from 5.4 m to 7.4 m with high compressibility and low shear strength. Thus, point foundation was used to improve this layer. The prediction methods of soil bearing capacity and the settlement on the point foundation were calculated. After the treatment of soil, the unconfined compression strength of the point foundation column was determined and the static compression test for the point foundation column was also performed. The research results show that this method can significantly reduce the settlement of shallow footing and improved the bearing capacity of the soil. The final settlement of shallow footing was smaller than 2.54 cm and the bearing capacity of soil treatment can be satisfied with the requirement of construction building. This is a successful case of the application of point foundation to improve soft soil in Vietnam.


2013 ◽  
Vol 405-408 ◽  
pp. 57-62
Author(s):  
Wei Zhou Li

Numerical simulation model was established with FLAC3D to calculate the bearing capacity and the settlement of composite foundation with different pile-soil shear modulus. Then the rules of the effect of pile-soil shear modulus upon mixed pile composite foundation have been obtained. The results show that there is a great relationship between the pile-soil shear modulus and the bearing capacity of mixed pile composite foundation. Along with the increase of pile-soil shear modulus, the bearing capacity increase. Also, this paper suggest that the right value of pile-soil shear modulus of mixed pile composite foundation solidified by HEC or HAS consolidator dosing 12%, which can be used for the design of mixed pile composite foundation.


1983 ◽  
Vol 20 (1) ◽  
pp. 182-185 ◽  
Author(s):  
Leland M. Kraft Jr. ◽  
Steven C. Helfrich

Measured results of full-scale and model bearing capacity tests are compared with predictions from projected area methods and with a more rigorous method developed by Hanna. The results of the comparisons for these 27 cases support the procedure developed by Hanna. The ratio of predicted to observed bearing capacity was 0.99, and the standard deviation was 0.23.


Sign in / Sign up

Export Citation Format

Share Document