Solid-Phase Extraction and Reverse-Phase HPLC: Application to Study the Urinary Excretion Pattern of Benzophenone-3 and its Metabolite 2,4-Dihydroxybenzophenone in Human Urine

2011 ◽  
pp. 218-230
2008 ◽  
Vol 3 ◽  
pp. ACI.S396 ◽  
Author(s):  
Helena Gonzalez ◽  
Carl-Eric Jacobson ◽  
Ann-Marie Wennberg ◽  
Olle Larkö ◽  
Anne Farbrot

Background Benzophenone-3 (BZ-3) is a common ultraviolet (UV) absorbing compound in sunscreens. It is the most bioavailable species of all UV-absorbing compounds after topical application and can be found in plasma and urine. Objectives The aim of this study was to develop a reverse-phase high performance liquid chromatography (HPLC) method for determining the amounts BZ-3 and its metabolite 2,4-dihydroxybenzophenone (DHB) in human urine. The method had to be suitable for handling a large number of samples. It also had to be rapid and simple, but still sensitive, accurate and reproducible. The assay was applied to study the urinary excretion pattern after repeated whole-body applications of a commercial sunscreen, containing 4% BZ-3, to 25 healthy volunteers. Methods Each sample was analyzed with regard to both conjugated/non-conjugated BZ-3 and conjugated/non-conjugated DHB, since both BZ-3 and DHB are extensively conjugated in the body. Solid-phase extraction (SPE) with C8 columns was followed by reverse-phase HPLC. For separation a Genesis C18 column was used with an acethonitrile-water mobile phase and the UV-detector was set at 287 nm. Results The assay was linear r 2 > 0.99, with detection limits for BZ-3 and DHB of 0.01 µmol L-1 and 0.16 µmol L-1 respectively. Relative standard deviation (RSD) was less than 10% for BZ-3 and less than 13% for DHB. The excretion pattern varied among the human volunteers; we discerned different patterns among the individuals. Conclusions The reverse-phase HPLC assay and extraction procedures developed are suitable for use when a large number of samples need to be analyzed and the method fulfilled our objectives. The differences in excretion pattern may be due to differences in enzyme activity but further studies, especially about genetic polymorphism, need to be performed to verify this finding.


2004 ◽  
Vol 24 (5) ◽  
pp. 511-514 ◽  
Author(s):  
Julie Sunderland ◽  
Andrew M. Lovering ◽  
Caroline M. Tobin ◽  
Alasdair P. MacGowan ◽  
John M. Roe ◽  
...  

1998 ◽  
Vol 63 (3) ◽  
pp. 417-421 ◽  
Author(s):  
Davide Bertelli ◽  
Maria Plessi ◽  
Daniela Braghiroli ◽  
Agar Monzani

Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 226
Author(s):  
Matteo Chiarello ◽  
Laura Anfossi ◽  
Simone Cavalera ◽  
Fabio Di Di Nardo ◽  
Thea Serra ◽  
...  

NanoMIPs that are prepared by solid phase synthesis have proven to be very versatile, but to date only limited attention has been paid to their use in solid phase extraction. Thus, since nanoMIPs show close similarities, in terms of binding behavior, to antibodies, it seems relevant to verify if it is possible to use them as mimics of the natural antibodies that are used in immunoextraction methods. As a proof-of-concept, we considered prepared nanoMIPs against fluoroquinolone ciprofloxacin. Several nanoMIPs were prepared in water with polymerization mixtures of different compositions. The polymer with the highest affinity towards ciprofloxacin was then grafted onto a solid support and used to set up a solid phase extraction–HPLC method with fluorescence detection, for the determination of fluoroquinolones in human urine. The method resulted in successful selection for the fluoroquinolone antibiotics, such that the nanoMIPs were suitable for direct extraction of the antibiotics from the urine samples at the µg mL−1 level. They required no preliminary treatment, except for a 1 + 9 (v/v) dilution with a buffer of pH 4.5 and they had good analyte recovery rates; up to 85% with precision in the range of 3 to 4.5%, without interference from the matrix. These experimental results demonstrate, for the first time, the feasibility of the use of nanoMIPs to develop solid phase extraction methods.


Sign in / Sign up

Export Citation Format

Share Document