Experimental study on creep behavior of sandstone with pore water pressure and its constitutive modeling

Author(s):  
Y Cao ◽  
W Wang ◽  
J Lü ◽  
T Liu ◽  
Z Zheng
2014 ◽  
Vol 56 (2) ◽  
pp. 1450008-1-1450008-21 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Yuta Nezasa ◽  
Yong-Hwan Cho ◽  
Ryo Ishihara ◽  
Norimi Mizutani

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Huang ◽  
Kejun Wen ◽  
Dongsheng Li ◽  
Xiaojia Deng ◽  
Lin Li ◽  
...  

The unloading creep behavior of soft soil under lateral unloading stress path and excess pore water pressure is the core problem of time-dependent analysis of surrounding rock deformation under excavation of soft soil. The soft soil in Shenzhen, China, was selected in this study. The triaxial unloading creep tests of soft soil under different initial excess pore water pressures (0, 20, 40, and 60 kPa) were conducted with the K0 consolidation and lateral unloading stress paths. The results show that the unloading creep of soft soil was divided into three stages: attenuation creep, constant velocity creep, and accelerated creep. The duration of creep failure is approximately 5 to 30 mins. The unloading creep behavior of soft soil is significantly affected by the deviatoric stress and time. The nonlinearity of unloading creep of soft soil is gradually enhanced with the increase of the deviatoric stress and time. The initial excess pore water pressure has an obvious weakening effect on the unloading creep of soft soil. Under the same deviatoric stress, the unloading creep of soft soil is more significant with the increase of initial excess pore water pressure. Under undrained conditions, the excess pore water pressure generally decreases during the lateral unloading process and drops sharply at the moment of unloading creep damage. The pore water pressure coefficients during the unloading process were 0.73–1.16, 0.26–1.08, and 0.35–0.96, respectively, corresponding to the initial excess pore water pressures of 20, 40, and 60 kPa.


Author(s):  
Manuela Kanitz ◽  
Juergen Grabe

Floating offshore structures used to generate wind energy are founded on submerged foundations such as anchor plates. Their extraction resistance is of major importance during and at the end of the lifetime cycle of these offshore structures. During their lifetime cycle, the foundation is suspended to complex loading conditions due to waves, tidal currents and wind loads. To guarantee a stable structure, the extraction resistance of the anchor plates has to be known. At the end of the lifetime cycle of the offshore structures, the extraction resistance is mainly influencing the removal of the anchor plates. This resistance is a lot higher than the sum of its self-weight and hydrostatic and earth pressure acting on the structure. With initiation of a motion of the anchor plate, the volume underneath this structure is increased leading to negative pore water pressure until inflowing pore water is filling the newly created volume. In order to investigate this effect, an extensive experimental study at model scale with a displacement-driven extraction is performed. Pore pressure measurements are carried out at various locations in the soil body and underneath the plate. The soil movement is tracked with a high-speed camera to investigate the shear band formation with the particle image velocimetry method (PIV). The experiments will be conducted considering different packing densities of the soil body and at different extraction velocities to investigate their effect on the extraction resistance of anchor plates.


2012 ◽  
Vol 26 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Yong-zhou Cheng ◽  
Chang-bo Jiang ◽  
Li-ping Zhao ◽  
Yun Pan ◽  
Qing-feng Li

Sign in / Sign up

Export Citation Format

Share Document