2002 ◽  
Vol 124 (4) ◽  
pp. 953-957 ◽  
Author(s):  
D. Lornage ◽  
E. Chatelet ◽  
G. Jacquet-Richardet

Rotating parts of turbomachines are generally studied using different uncoupled approaches. For example, the dynamic behavior of shafts and wheels are considered independently and the influence of the surrounding fluid is often taken into account in an approximate way. These approaches, while often sufficiently accurate, are questionable when wheel-shaft coupling is observed or when fluid elements are strongly coupled with local structural deformations (leakage flow between wheel and casing, fluid bearings mounted on a thin-walled shaft, etc.). The approach proposed is a step toward a global model of shaft lines. The whole flexible wheel-shaft assembly and the influence of specific fluid film elements are considered in a fully three-dimensional model. In this paper, the proposed model is first presented and then applied to a simple disk-shaft assembly coupled with a fluid film clustered between the disk and a rigid casing. The finite element method is used together with a modal reduction for the structural analysis. As thin fluid films are considered, the Reynolds equation is solved using finite differences in order to obtain the pressure field. Data are transferred between structural and fluid meshes using a general method based on an interfacing grid concept. The equations governing the whole system are solved within a time-marching procedure. The results obtained show significant influence of specific three-dimensional features such as disk-shaft coupling and local disk deformations on global behavior.


2015 ◽  
Vol 9 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Kuiyang Wang ◽  
Jinhua Tang ◽  
Guoqing Li

In order to optimize the design method and improve the performance of hydraulic retarder, the numerical simulation of multi-field coupling of heat, fluid and solid is carried out to hydraulic retarder, based on the numerical computation and algorithm of heat-fluid coupling and fluid-solid coupling. The computation models of heat-fluid coupling and fluid-solid coupling of hydraulic retarder are created. The three dimensional model of hydraulic retarder is established based on CATIA software, and the whole flow passage model of hydraulic retarder is extracted on the basis of the three dimensional model established. Based on the CFD calculation and the finite element numerical simulation, the temperature field, stress field, deformation and stress state are analysised to hydraulic retarder in the state of whole filling when the rotate speed is 1600 r/min. In consideration of rotating centrifugal force, thermal stress and air exciting vibration force of blade surface, by using the sequential coupling method, the flow field characteristics of hydraulic retarder and dynamic characteristics of blade structure are analysised and researched based on multi-field coupling of heat, fluid and solid. These provide the theoretical foundation and references for parametric design of hydraulic retarder.


Sign in / Sign up

Export Citation Format

Share Document