Development and its validation of Rigid Plastic Moving Particle Simulation method

Author(s):  
K Isobe ◽  
S Ohtsuka ◽  
T Hoshina
2020 ◽  
Vol 66 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Zumei Zheng ◽  
Guangtao Duan ◽  
Naoto Mitsume ◽  
Shunhua Chen ◽  
Shinobu Yoshimura

Author(s):  
Kyung Sung Kim ◽  
Moo Hyun Kim ◽  
Jong-Chun Park

For oil/gas production/processing platforms, multiple liquid layers can exist and their respective sloshing motions can also affect platform performance. To numerically simulate those problems, a new multi-liquid MPS (Moving Particle Simulation) method is developed. In particular, to better simulate the relevant physics, robust self-buoyancy model, interface searching model, and surface-tension model are developed. The developed multi-liquid MPS method is validated by comparisons against Molin et al’s (2012) three-liquid-sloshing experiment and the corresponding linear potential theory. The verified multi-liquid MPS program is subsequently coupled with a vessel-motion program in time domain to investigate their dynamic-coupling effects. In case of multiple liquid layers, there exist more than one sloshing natural frequencies, so the relevant physics can be much more complicated compared with the single-liquid-tank case. The numerical simulations also show that liquid cargo can function as a beneficial anti-rolling device.


Sign in / Sign up

Export Citation Format

Share Document