cell boundary
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kate M. O’Neill ◽  
Emanuela Saracino ◽  
Barbara Barile ◽  
Nicholas J. Mennona ◽  
Maria Grazia Mola ◽  
...  

AbstractAstrocytes are key regulators of brain homeostasis, which is essential for proper cognitive function. The role of cytoskeletal dynamics in this critical regulatory process is unknown. Here we find that actin is dynamic in certain subcellular regions, especially near the cell boundary. Our results further indicate that actin dynamics concentrates into “hotspot” regions that selectively respond to certain chemophysical stimuli, specifically the homeostatic challenges of ion or water concentration increases. Substrate topography makes actin dynamics more frequent yet weaker, and it also alters actin network structure. Superresolution images analyzed with a filament extraction algorithm demonstrate that surface topography is associated with a predominant perpendicular alignment of actin filaments near the cell boundary whereas flat substrates result in an actin cortex mainly parallel to the cell boundary. Thus, actin structure and dynamics together integrate information from different aspects of the environment that might steer the operation of neural cell networks.TeaserAstrocytes display dynamic actin that is modulated by combinations of chemophysical stimuli and environmental topographies.



PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256713
Author(s):  
L. Cao ◽  
E. Manders ◽  
M. Helmes

Simultaneous calcium and contractility measurements on isolated adult cardiomyocytes have been the gold standard for the last decades to study cardiac (patho)physiology. However, the throughput of this system is low which limits the number of compounds that can be tested per animal. We developed instrumentation and software that can automatically find adult cardiomyocytes. Cells are detected based on the cell boundary using a Sobel-filter to find the edge information in the field of view. Separately, we detected motion by calculating the variance of intensity for each pixel in the frame through time. Additionally, it detects the best region for calcium and contractility measurements. A sensitivity of 0.66 ± 0.08 and a precision of 0.82 ± 0.03 was reached using our cell finding algorithm. The percentage of cells that were found and had good contractility measurements was 90 ± 10%. In addition, the average time between 2 cardiomyocyte calcium and contractility measurements decreased from 93.5 ± 80.2 to 15.6 ± 8.0 seconds using our software and microscope. This drastically increases throughput and provides a higher statistical reliability when performing adult cardiomyocyte functional experiments.



2021 ◽  
Vol 9 ◽  
Author(s):  
Katsuhiko Sato ◽  
Daiki Umetsu

The vertex model is a useful mathematical model to describe the dynamics of epithelial cell sheets. However, existing vertex models do not distinguish contraction forces on the cell boundary from adhesion between cells, employing a single parameter to express both. In this paper, we introduce the rest length of the cell boundary and its dynamics into the existing vertex model, giving a novel formulation of the model that treats separately the contraction force and the strength of adhesion between cells. We apply this vertex model to the phenomenon of compartment boundary in the fruit fly pupa, recapturing the observation that increasing the strength of adhesion between cells straightens the compartment boundary, even though contraction forces at cell boundaries remain unchanged. We also discuss possibilities of the novel vertex models by considering the stretching of a cell sheet by external forces.



2021 ◽  
pp. 102154
Author(s):  
Xin Wang ◽  
Baolong Zheng ◽  
Kehang Yu ◽  
Sen Jiang ◽  
Enrique J. Lavernia ◽  
...  


2021 ◽  
Vol 44 (3) ◽  
Author(s):  
Mengchen Gao ◽  
Guili Zheng ◽  
Yanjun Zhang ◽  
Hongwen Zhang ◽  
Hui Zhang ◽  
...  


2020 ◽  
Vol 86 (1) ◽  
Author(s):  
Wasilij Barsukow

AbstractThe Active Flux scheme is a finite volume scheme with additional point values distributed along the cell boundary. It is third order accurate and does not require a Riemann solver. Instead, given a reconstruction, the initial value problem at the location of the point value is solved. The intercell flux is then obtained from the evolved values along the cell boundary by quadrature. Whereas for linear problems an exact evolution operator is available, for nonlinear problems one needs to resort to approximate evolution operators. This paper presents such approximate operators for nonlinear hyperbolic systems in one dimension and nonlinear scalar equations in multiple spatial dimensions. They are obtained by estimating the wave speeds to sufficient order of accuracy. Additionally, an entropy fix is introduced and a new limiting strategy is proposed. The abilities of the scheme are assessed on a variety of smooth and discontinuous setups.



2020 ◽  
Vol 30 (24) ◽  
pp. 4973-4983.e10
Author(s):  
Elisa Maria Rieckhoff ◽  
Frederic Berndt ◽  
Maria Elsner ◽  
Stefan Golfier ◽  
Franziska Decker ◽  
...  




2020 ◽  
Vol 66 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Zumei Zheng ◽  
Guangtao Duan ◽  
Naoto Mitsume ◽  
Shunhua Chen ◽  
Shinobu Yoshimura


Sign in / Sign up

Export Citation Format

Share Document