Focal Spot Engineering for Bit-by-Bit Recording

2015 ◽  
pp. 61-80
Keyword(s):  
Author(s):  
D. A. Carpenter ◽  
Ning Gao ◽  
G. J. Havrilla

A monolithic, polycapillary, x-ray optic was adapted to a laboratory-based x-ray microprobe to evaluate the potential of the optic for x-ray micro fluorescence analysis. The polycapillary was capable of collecting x-rays over a 6 degree angle from a point source and focusing them to a spot approximately 40 µm diameter. The high intensities expected from this capillary should be useful for determining and mapping minor to trace elements in materials. Fig. 1 shows a sketch of the capillary with important dimensions.The microprobe had previously been used with straight and with tapered monocapillaries. Alignment of the monocapillaries with the focal spot was accomplished by electromagnetically scanning the focal spot over the beveled anode. With the polycapillary it was also necessary to manually adjust the distance between the focal spot and the polycapillary.The focal distance and focal spot diameter of the polycapillary were determined from a series of edge scans.


2020 ◽  
Vol 78 (4) ◽  
pp. 479-486
Author(s):  
Marcela Tatiana Fernandes Beserra ◽  
◽  
Ricardo Tadeu Lopes ◽  
Davi Ferreira de Oliveira ◽  
Claudio Carvalho Conti ◽  
...  

2021 ◽  
Author(s):  
Xiao Wang ◽  
Robert D. MacDougall ◽  
Peng Chen ◽  
Charles A. Bouman ◽  
Simon K. Warfield

2002 ◽  
Vol 41 (Part 1, No. 11A) ◽  
pp. 6380-6385
Author(s):  
Hyeong Ryeol Oh ◽  
Dae-Gap Gweon ◽  
Jun-Hee Lee ◽  
Sang-Cheon Kim ◽  
See-Hyung Lee ◽  
...  

2003 ◽  
Author(s):  
Julien Fuchs ◽  
Benoit F. Wattellier ◽  
Ji P. Zou ◽  
Jean-Christophe Chanteloup ◽  
H. Bandulet ◽  
...  

2011 ◽  
Vol 29 (3) ◽  
pp. 345-351 ◽  
Author(s):  
C.M. Brenner ◽  
J.S. Green ◽  
A.P.L. Robinson ◽  
D.C. Carroll ◽  
B. Dromey ◽  
...  

AbstractThe scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15–380 mJ at intensities of 1016–1018 W/cm2. The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.


Solar Energy ◽  
1957 ◽  
Vol 1 (4) ◽  
pp. 19-22 ◽  
Author(s):  
Paul D. Jose
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document