Electrostatic Pressures on Boundary Surfaces

2017 ◽  
pp. 177-194
Author(s):  
Sivaji Chakravorti
Keyword(s):  
1995 ◽  
Vol 23 (3) ◽  
pp. 133-136 ◽  
Author(s):  
K. R. Hallam ◽  
R. K. Wild

Author(s):  
István Ecsedi ◽  
Attila Baksa

AbstractThis paper deals with the Saint-Venant torsion of elastic, cylindrically orthotropic bar whose cross section is a sector of a circular ring shaped bar. The cylindrically orthotropic homogeneous elastic wedge-shaped bar strengthened by on its curved boundary surfaces by thin isotropic elastic shells. An analytical method is presented to obtain the Prandtl’s stress function, torsion function, torsional rigidity and shearing stresses. A numerical example illustrates the application of the developed analytical method.


Author(s):  
Sean M. Gelston ◽  
Debasish Dutta

Abstract Skeleton curves and surfaces have many applications in computer aided design and analysis. Construction of skeletons is an active area of research. We consider the inverse problem that of recovering boundary surfaces from given skeleton elements. The skeleton of any 3D object will, in general, consist of curves and surfaces. Therefore, any boundary reconstruction algorithm must systematically process the surfaces generated by the skeletal curves and the skeletal surfaces. In this paper (Part I) we present algorithms for reconstructing boundary surfaces corresponding to skeletal curves. Implemented examples are also included. In a companion paper (Part II) we consider skeletal elements that are surfaces.


Author(s):  
Zeng-Jia Hu ◽  
Zhi-Kui Ling

Abstract The instantaneous screw axis is used in the generation of the swept volume of a moving object. The envelope theory is used to determine the boundary surfaces of the swept volume. Specifically, the envelope surfaces generated by a plane polygon, cylindrical and spherical surfaces are presented. Furthermore, the ruled surfaces generated by edges of the moving object are discussed.


2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Dipsikha Debnath ◽  
James S. Gainer ◽  
Can Kilic ◽  
Doojin Kim ◽  
Konstantin T. Matchev ◽  
...  

Author(s):  
Ihor Borachok ◽  
Roman Chapko ◽  
B. Tomas Johansson

AbstractWe consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert’s method [


Author(s):  
J. Xia ◽  
Q. J. Ge

Abstract This paper develops methods for the exact analysis and representation of the swept volume of a circular cylinder undergoing rational Bézier and B-spline motions. Instead of following the traditional approach of analyzing the point trajectory of an object motion for swept volume analysis, this paper seeks to develop a new approach to swept volume analysis by studying the plane trajectory of a rational motion. It seeks to bring together recent work in swept volume analysis, plane representation of developable surfaces, as well as computer aided synthesis of freeform rational motions. The results have applications in design and approximation of freeforms surfaces as well as tool path planning for 5-axis machining of freeform surfaces.


Sign in / Sign up

Export Citation Format

Share Document