A swelling study of process-induced and deformation-induced anisotropy of filled rubbers

2015 ◽  
pp. 141-146 ◽  
Author(s):  
V Fernandes ◽  
D De Focatiis
1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-195-Pr2-198
Author(s):  
H. Chiriac ◽  
T.-A. Óvári ◽  
L. Kraus ◽  
F. Barariu

1985 ◽  
Vol 46 (C6) ◽  
pp. C6-193-C6-196 ◽  
Author(s):  
G. Suran ◽  
K. Ounadjela ◽  
J . Sztern ◽  
C. Battarel
Keyword(s):  

2010 ◽  
Vol 38 (1) ◽  
pp. 80-98 ◽  
Author(s):  
M. Gerster ◽  
C. Fagouri ◽  
E. Peregi

Abstract One challenge facing green tire technology is to achieve good silica hydrophobation/dispersion within the polymer matrix without a detrimental increase in the rubber compound’s viscosity during compounding. This phenomenon is well known to be induced by premature and unwanted coupling and/or crosslinking of the traditional coupling agents. The current state-of-the-art polysulfides silanes, bis(3-triethoxysilylpropyl)tetrasulfide and to a lesser extent bis(3-triethoxysilylpropyl)disulfide (“Product Application—VP Si 75/VP X 75-S in the Rubber Industry,” Degussa Hüls Report No. PA 723.1E), need to be carefully incorporated with careful temperature control during the rubber compounding to prevent this “scorchy” behavior. This paper will present novel monofunctional silanes which are suited for preparing highly silica-loaded rubber compounds of superior processability, while applying fewer mixing passes, thereby reducing mixing times which can lead to improved productivity and cost savings. Additionally, these safer coupling agents can be processed at higher temperatures which can, again, lead to reduced mixing time and better ethanol removal thereby improving the tire’s physical properties and reducing the volatile organic compounds generated during the tire’s use. The rubber compounds produced using these monofunctional silanes are characterized by lower Mooney viscosity and improved processability. Advantageously, within these novel chemical classes of coupling agents, selective functionalization of the silanes allows production of tailor-made coupling agents which can respond to the specific requirements of the tire industry (Vilgis, T. A. and Heinrich, G., “Die Physic des Autoreifens,” Physikalische Blätter, Vol. 57, 2001, pp. 1–7).


2021 ◽  
pp. 2100452
Author(s):  
Ethan R. Rosenberg ◽  
Kai Litzius ◽  
Justin M. Shaw ◽  
Grant A. Riley ◽  
Geoffrey S. D. Beach ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Julian Seifert ◽  
Damian Günzing ◽  
Samira Webers ◽  
Martin Dulle ◽  
Margarita Kruteva ◽  
...  

The implementation of anisotropy to functional materials is a key step towards future smart materials. In this work, we evaluate the influence of preorientation and sample architecture on the strain-induced...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Krysztofik ◽  
Sevgi Özoğlu ◽  
Robert D. McMichael ◽  
Emerson Coy

AbstractWe report on the correlation of structural and magnetic properties of Y3Fe5O12 (YIG) films deposited on Y3Al5O12 substrates using pulsed laser deposition. The recrystallization process leads to an unexpected formation of interfacial tensile strain and consequently strain-induced anisotropy contributing to the perpendicular magnetic anisotropy. The ferromagnetic resonance linewidth of YIG is significantly increased in comparison to a film on a lattice-matched Gd3Ga5O12 substrate. Notably, the linewidth dependency on frequency has a negative slope. The linewidth behavior is explained with the proposed anisotropy dispersion model.


Sign in / Sign up

Export Citation Format

Share Document