Emission of Multi Charged Ions

Keyword(s):  
1979 ◽  
Vol 40 (C7) ◽  
pp. C7-21-C7-22
Author(s):  
K. Peska ◽  
E. Alge ◽  
H. Villinger ◽  
H. Störi ◽  
W. Lindinger

1989 ◽  
Vol 50 (C2) ◽  
pp. C2-227-C2-230 ◽  
Author(s):  
I. S. BITENSKY ◽  
E. S. PARILIS

Author(s):  
John H. D. Eland ◽  
Raimund Feifel

Double ionisation of the triatomic molecules presented in this chapter shows an added degree of complexity. Besides potentially having many more electrons, they have three vibrational degrees of freedom (three normal modes) instead of the single one in a diatomic molecule. For asymmetric and bent triatomic molecules multiple modes can be excited, so the spectral bands may be congested in all forms of electronic spectra, including double ionisation. Double photoionisation spectra of H2O, H2S, HCN, CO2, N2O, OCS, CS2, BrCN, ICN, HgCl2, NO2, and SO2 are presented with analysis to identify the electronic states of the doubly charged ions. The order of the molecules in this chapter is set first by the number of valence electrons, then by the molecular weight.


Author(s):  
Laxmikanta Mandi ◽  
Kaushik Roy ◽  
Prasanta Chatterjee

Analytical solitary wave solution of the dust ion acoustic waves (DIAWs) is studied in the frame-work of Korteweg-de Vries (KdV), damped force Korteweg-de Vries (DFKdV), damped force modified Korteweg-de Vries (DFMKdV) and damped forced Zakharov-Kuznetsov (DFZK) equations in an unmagnetized collisional dusty plasma consisting of negatively charged dust grain, positively charged ions, Maxwellian distributed electrons and neutral particles. Using reductive perturbation technique (RPT), the evolution equations are obtained for DIAWs.


Sign in / Sign up

Export Citation Format

Share Document