Study on the power grid structural scheme of the Ultra-High Voltage power delivery system used in large-scale thermal power base

2016 ◽  
pp. 667-672
Author(s):  
P Ji ◽  
J Liu ◽  
H Yang ◽  
W Tang ◽  
Y Song ◽  
...  
2015 ◽  
Vol 713-715 ◽  
pp. 1347-1350
Author(s):  
Yu Fei Rao ◽  
Lin Lin Yu

In the process of China's ultra high-voltage (UHV) construction, Henan UHV power grid is the important part. Summer great load mode of Henan power gird is chosen as the typical method. In the background of completing Nanyang UHV extension project, based on single pole running and double pole running of Hami-Zhengzhou UHVDC project respectively, it is simulated and analyzed. The results indicate that power grid cannot maintain stability when single pole block fault or double pole block fault occurs. Through theoretical analysis and simulation, under UHV AC running certain limit, HVDC latching grid is stable. Under UHV DC running certain limit, HVDC latching grid is stable. Based on continuous simulation, this paper obtained the coordinated operation of area UHV AC and DC.


2014 ◽  
Vol 716-717 ◽  
pp. 1409-1412
Author(s):  
Jia Yin Sui ◽  
Min Zhao ◽  
Wei Yue Zhou ◽  
Peng Jin

Scheduling technology plays an important role in avoiding the occurrence of large scope blackout. India "7.30", "7.31" blackout indicates dispatching mechanism is not reasonable. It is more important that it violates scheduling and supervision direction. The network defense mechanism is not perfect. It is lack of dynamic analysis and safety evaluation capacity. Dispatching technology can be a basis for China's high-voltage power grid construction, dispatching management and establishing a perfect accident recovery plan.


2015 ◽  
Vol 7 (6) ◽  
pp. 063103 ◽  
Author(s):  
Shuxin Tian ◽  
Haozhong Cheng ◽  
Pingliang Zeng ◽  
Lu Liu ◽  
Qingru Qi ◽  
...  

Author(s):  
Chengzhu Yin ◽  
Miao Wang

The nuclear power site resource is very rich in Jiaodong Peninsula of Shandong Province. It is suitable for construction of the large nuclear power base. The transmission scope and direction of Jiaodong Peninsula nuclear power base is analyzed, and optional transmission plans of Plant 1, Plant 2, Plant 3 and Plant 4 are proposed. The transmission plans are recommended based on technical and economic comparison, which provide good references for construction of the large-scale nuclear power base and power grid development planning. Jiaodong Peninsula nuclear power base is planned to be built in the year of 2016–2030, planning capacity of which is 30500MW. The site of nuclear power base is 100∼400km away from the power load center. The nuclear power will use AC transmission and mainly meet the demand of local power load. The early 15500MW gensets will be accessed to the power grid at 500kV, as the following 15000MW gensets will be accessed at 1000kV UHV (Ultra-high voltage) grid. As the accessing of many large-capacity gensets will produce huge impact to the short-circuit current, sectionalized double-bus configuration is recommended in the 500kV main electrical wiring to reduce the short-circuit current of 500kV bus of nuclear power plant. Double bus section cross wire connection is presented to make sure that every two generators on each bus will be connected to different substations on two transmission lines which are set up on different poles and in different paths, to improve the reliability of the power plant. Through analysis and provement, the construction of large nuclear power base must be based on large and stronge power grid, especially the UHV (Ultra-high voltage) AC grid, to meet the demand of huge nuclear power transmission, and to improve the ability of power exchange and ensure the safety of regional power supply. Also, as the nuclear power plant should better be in base-load operation, the construction of large-scale nuclear power base, would make the system load-control demands increase, which leads to more prominent problems. In order to avoid adding additional depth of peaking power operation and reducing the overall economic operation of power system, power grid should have the necessary means to load-control. Namely the construction of peaking units, such as pumped storage units or gas-fired units at about 5000MW. By analyzing and demonstration, large-scale nuclear power base must rely on large-scale power grid, particularly the support of UHV power grid in order to meet the demond of large-scale power transmission and electricity exchange, and also to ensure regional security of electricity supply.


2021 ◽  
pp. 0958305X2110310
Author(s):  
Yongpei Wang ◽  
Chao Xu ◽  
Pinghong Yuan

China has built the world's largest power infrastructure. Those upgrading power grid facilities not only contribute to providing enough end-used energy for the world's factories, but also offering a basic guarantee for the clean strategy of Building a Beautiful China proposed by the Chinese government. The national grid system supported by extra-high voltage and ultra-high voltage grids as the backbone makes it possible for a non-dispatchable renewable energy source to be connected to the national grid and transmitted to terminal consumers in load centers. The aim of this paper is to test whether China's advanced power grids have played a positive role in promoting power generation of intermittent renewable energy source. A novel nonlinear estimation named panel smoothing transition regression is introduced to capture heterogeneous effects of grid-connecting renewable energy source across regions. The empirical results show that whereas power grid infrastructure generally enhances power generation of renewable energy source and consumption in energy bases and load centers, the effects change across different voltage levels of power grids. The extra-high voltage power grids show strong support for grid-connecting renewable energy source, while the effect of ultra-high voltage power grids is unexpectedly insignificant. The extra-high voltage power grids have not yet become the backbone of the national grid, which is the main reason for the inadequate grid-connected renewable energy source to the ultra-high voltage power grids, indicating the importance of upgrading the power grid infrastructure.


Sign in / Sign up

Export Citation Format

Share Document