grid construction
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 39)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wei Li ◽  
Xin Gong

The traditional methods for generating digital art composition have the disadvantage of capturing incomplete geometric information, which leads to obvious defects in the generation results. Therefore, a digital art composition generation method based on the multilabel learning algorithm is proposed in this research. Firstly, a preset series of grids are prepared to generate sampling and fractal pixels on the drawing base. Then, the preset grid construction is constructed by the interactive program of the preset grid library. After the stroke is drawn by the user, the actual motion trajectory of the pen is sampled by the digital panel, and the stroke information in the motion trajectory is obtained by the multilabel learning algorithm. Next, the steps of generating art composition are designed, including generating the skeleton of art composition, generating the geometric network structure of the skeleton, generating the sampling pixel and connecting the fractal pixel, and initializing other attributes of the mesh. Experimental results show that the proposed method has higher sampling rate and geometric information capture rate and has better application performance and prospect.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 75
Author(s):  
Valentin Alekseev ◽  
Maria Vasilyeva ◽  
Uygulaana Kalachikova ◽  
Eric T. Chung

Problems in perforated media are complex and require high resolution grid construction to capture complex irregular perforation boundaries leading to the large discrete system of equations. In this paper, we develop a multiscale model reduction technique based on the Discontinuous Galerkin Generalized Multiscale Finite Element Method (DG-GMsFEM) for problems in perforated domains with non-homogeneous boundary conditions on perforations. This method implies division of the perforated domain into several non-overlapping subdomains constructing local multiscale basis functions for each. We use two types of multiscale basis functions, which are constructed by imposing suitable non-homogeneous boundary conditions on subdomain boundary and perforation boundary. The construction of these basis functions contains two steps: (1) snapshot space construction and (2) solution of local spectral problems for dimension reduction in the snapshot space. The presented method is used to solve different model problems: elliptic, parabolic, elastic, and thermoelastic equations with non-homogeneous boundary conditions on perforations. The concepts for coarse grid construction and definition of the local domains are presented and investigated numerically. Numerical results for two test cases with homogeneous and non-homogeneous boundary conditions are included, as well. For the case with homogeneous boundary conditions on perforations, results are shown using only local basis functions with non-homogeneous boundary condition on subdomain boundary and homogeneous boundary condition on perforation boundary. Both types of basis functions are needed in order to obtain accurate solutions, and they are shown for problems with non-homogeneous boundary conditions on perforations. The numerical results show that the proposed method provides good results with a significant reduction of the system size.


2021 ◽  
Vol 236 ◽  
pp. 02002
Author(s):  
Bingqi Jiao ◽  
Zhicheng Xu ◽  
Kuan Zheng ◽  
Xiaoqing Yan ◽  
Junshu Feng

In response to the climate change, it has been becoming the consensus of most countries in the world to accelerate the development of a high proportion of clean energy. The power grid is the core to support the development of a high proportion of clean energy, and the key is to accelerate the construction of clean power grids. This paper focuses on the main characteristics of clean power grid construction, and proposes a set of clean power grid development evaluation indicators including 5 first-level indicators and 19 second-level indicators and an analysis method based on radar charts. Taking China Power Grid as an example, this paper analyzes in detail the characteristics of the medium and long-term development mode of clean power grids and the relative change trends of specific indicators, and discusses the key links and potential problems that need attention in the development of clean power grids.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
GuangYao Peng ◽  
Yin Lei ◽  
Haolin Li ◽  
Di Wu ◽  
Junyuan Wang ◽  
...  

Author(s):  
V.O. Moskalenko ◽  
S.N. Ilukhin ◽  
V.V. Bulavina

The purpose of the study was to carry out a numerical simulation in a special package of the subsonic air flow around a pneumatic bullet of various modifications, the latter being previously experimentally tested on the ballistic track of the Department of Dynamics and Flight Control of Rockets and Spacecraft at Bauman Moscow State Technical University. The paper briefly analyzes the applicability of the most common computing packages for solving the problem, justifies the use of the ANSYS CFX package, describes the requirements and features of the computational grid construction, and gives the boundary conditions. The verification problem was solved, which showed good correspondence of the constructed model to the results of field shooting carried out in previous studies. The influence of the longitudinal rotation of the reference model of the bullet on the pattern of its flow and aerodynamic characteristics were investigated. The results of the calculations confirmed the drag improvement and bullet dispersion effects obtained when testing a number of modified samples. The calculated flow patterns and pressure fields contributed to a complete understanding of the physics of the studied modifications in a wide range of flight speeds.


Sign in / Sign up

Export Citation Format

Share Document