High resolution imaging of crosshole data using waveform inversion and reverse-time imaging

2003 ◽  
pp. 317-322
Author(s):  
Seiji Nakagawa ◽  
Toshiki Watanabe ◽  
Kurt Nihei ◽  
Larry Myer
2020 ◽  
Author(s):  
Andrzej Górszczyk ◽  
Stéphane Operto

Abstract. Detailed reconstruction of deep crustal targets by seismic methods remains a long-standing challenge. One key to address this challenge is the joint development of new seismic acquisition systems and leading-edge processing techniques. In marine environments, controlled-source seismic surveys at regional scale are typically carried out with sparse arrays of ocean bottom seismometers (OBSs), which provide incomplete and down-sampled subsurface illumination. To assess and minimize the acquisition footprint in high-resolution imaging process such as full waveform inversion, realistic crustal-scale benchmark models are clearly required.The deficiency of such models prompts us to build one and release it freely to the geophysical community. Here we introduce GO_3D_OBS – a 3D high-resolution geomodel representing a subduction zone, inspired by the geology of the Nankai Trough. The 175 km x 100 km x 30 km model integrates complex geological structures with a visco-elastic isotropic parametrization. It is defined in form of a uniform Cartesian grid containing 33.6e9 degrees of freedom for a grid interval of 25 m. The size of the model raises significant high-performance computing challenges to tackle large-scale forward propagation simulations and related inverse problems. We describe the workflow designed to implement all the model ingredients including 2D structural segments, their projection into the third dimension, stochastic components and physical parametrisation. Various wavefield simulations we present clearly reflect in the seismograms the structural complexity of the model and the footprint of different physical approximations. This benchmark model shall help to optimize the design of next generation 3D academic surveys – in particular but not only long-offset OBS experiments – to mitigate the acquisition footprint during high-resolution imaging of the deep crust.


2020 ◽  
Vol 223 (2) ◽  
pp. 792-810
Author(s):  
Tianci Cui ◽  
James Rickett ◽  
Ivan Vasconcelos ◽  
Ben Veitch

SUMMARY Full-waveform inversion (FWI) has demonstrated increasing success in estimating medium properties, but its computational cost still poses challenges in moving towards high-resolution imaging of targets at depth. Here, we propose a target-oriented FWI method that inverts for the medium parameters confined within an arbitrary region of interest. Our method is novel in terms of both local wavefield modelling and data redatuming, in order to build a target-oriented objective function which is sensitive to the target medium only without further assumptions about the medium outside. Based on the convolution-type representation theorem, our local forward modelling operator propagates wavefields within the target medium only while providing full acoustic coupling between the target medium and the surrounding geology. A key requirement of our local FWI method is that the subsurface wavefields surrounding and inside the target be as accurate as possible. As such, the subsurface wavefields are retrieved by the Marchenko method, which can redatum the single-sided surface reflection data to the target zone while preserving both primary and multiple reflections, with minimal a priori knowledge of the full-domain medium. Given a sufficiently accurate initial velocity macromodel, our numerical examples show that our local FWI method resolves the reservoir zone of a 2-D Barrett Unconventional P-wave velocity model much more efficiently than the conventional full-domain FWI without significantly sacrificing accuracy. Our method may further enable FWI approaches to high-resolution imaging of subsurface targets.


Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
Max T. Otten ◽  
Wim M.J. Coene

High-resolution imaging with a LaB6 instrument is limited by the spatial and temporal coherence, with little contrast remaining beyond the point resolution. A Field Emission Gun (FEG) reduces the incidence angle by a factor 5 to 10 and the energy spread by 2 to 3. Since the incidence angle is the dominant limitation for LaB6 the FEG provides a major improvement in contrast transfer, reducing the information limit to roughly one half of the point resolution. The strong improvement, predicted from high-resolution theory, can be seen readily in diffractograms (Fig. 1) and high-resolution images (Fig. 2). Even if the information in the image is limited deliberately to the point resolution by using an objective aperture, the improved contrast transfer close to the point resolution (Fig. 1) is already worthwhile.


Sign in / Sign up

Export Citation Format

Share Document