scholarly journals Heme Synthesis in Hereditary Hemolytic Anemias: Decreased δ-Aminolevulinic Acid Synthetase in Hemoglobin Köln Disease

1976 ◽  
Vol 10 (7) ◽  
pp. 702-706
Author(s):  
G B Kolski ◽  
D R Miller
Blood ◽  
1959 ◽  
Vol 14 (4) ◽  
pp. 476-485 ◽  
Author(s):  
MOISES GRINSTEIN ◽  
ROBIN M. BANNERMAN ◽  
CARL V. MOORE

Abstract The experiments described in this communication demonstrate that C14-tagged protoporphyrin 9 can be incorporated into the heme during the biosynthesis of hemoglobin. 1. In vitro observations: (a) C14 protoporphyrin 9 was found to be incorporated into heme by hemolysates of chicken and human blood incubated at 37 C. The degree of incorporation by washed chicken erythrocytes was less, presumably because the protoporphyrin was not readily transferred across the cell membrane. Incorporation by hemolysates was inhibited completely at 1 x 10-2 M KCN at 4 C., markedly by 1 x 10-2 M KCN at 37 C. and partially by 1 x 10-3 M Pb at 37 C. (b) The degree of incorporation was reduced by the addition of an equivalent quantity of delta-aminolevulinic acid. Furthermore, the incorporation of glycine-2-C14 into heme was reduced by the addition of an equivalent quantity of protoporphyrin 9. 2. In vivo observations: Intravenously administered C14 protoporphyrin was incorporated into the circulating hemoglobin of two rabbits with a phenylhydrazine-induced hemolytic anemia. These observations provide support for the view that protoporphyrin 9 itself is a true direct precursor of hemoglobin, in the biosynthetic pathway between porphobilinogen and heme. Comparative studies of rates of incorporation of C14 protoporphyrin 9 and its precursors into heme in vitro may provide a useful tool for the study of heme synthesis in normal and pathologic conditions. For instance, it was shown that hemolysates from the blood of patients with thalassemia major, with poor iron and glycine utilization, rapidly incorporated the tagged protoporphyrin into heme.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3414-3421 ◽  
Author(s):  
LM Garrick ◽  
K Gniecko ◽  
Y Liu ◽  
DS Cohan ◽  
JA Grasso ◽  
...  

Abstract We have used succinylacetone (4,6-dioxoheptanoic acid), a specific inhibitor of delta-aminolevulinic acid dehydrase, to gain insight into the defect in iron metabolism in the Belgrade anemia. The Belgrade rat has an inherited microcytic, hypochromic anemia associated with poor iron uptake into developing erythroid cells. Succinylacetone inhibits heme synthesis, leading to nonheme iron accumulation in mitochondria and cytosol of normal reticulocytes. When succinylacetone is used to inhibit Belgrade heme synthesis, iron from diferric transferrin does not accumulate in the stromal fraction that contains mitochondria, nor does 59Fe accumulate in the nonheme cytosolic fraction. Hence, the defect in the Belgrade rat reticulocyte occurs in the endocytic vesicle or in a step subsequent to iron transit from the vesicle but before the nonheme cytosolic or mitochondrial iron fractions. Therefore, the mutation affects either the release of iron from transferrin or iron transport from the vesicle to the mitochondrion.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2087-2087
Author(s):  
Jason N Berman ◽  
Pedro Fernandez-Murray ◽  
Gheyath Nasrallah ◽  
Noelia Dufay ◽  
Conrad V Fernandez ◽  
...  

Abstract Abstract 2087 Congenital sideroblastic anemias (CSA) are inherited diseases, characterized by ineffective haematopoiesis, typically severe microcytic anemia and bone marrow sideroblasts representing excess iron deposition in the mitochondria of the erythroid precursors. More than 40% of CSA cases are attributed to mutations in the X-linked gene ALAS2. ALAS2 encodes the mitochondrial enzyme aminolevulinic acid synthase-2, which utilizes glycine to form 5-aminolevulinic acid (5-ALA), a crucial precursor in heme synthesis. Another gene, SLC25A38, has recently been implicated in the abnormal heme development noted in CSA. The function of the SLC25A38 protein product is uncertain, although it is thought to be an erythroid specific mitochondrial carrier family protein, transporting glycine across mitochondrial membranes. We employed yeast and zebrafish model systems in parallel to evaluate the absence of SLC25A38 or ALAS2 on heme synthesis in vivo and identify potential therapeutic strategies. HEM1 (ALAS2 homologue) mutant yeast were completely unable to make heme, whereas heme synthesis was significantly reduced in YDL119c (SLC25A38 homologue) mutant yeast. To monitor heme synthesis, we utilized a beta-galactosidase reporter linked to Pcyc1, which is only active following binding of the yeast Hap1 transcription activator in the presence of heme. Both HEM1 and YDL119c mutant yeast showed no beta-galactosidase activity, however activity in the YDL119c mutant was returned to 30% with the addition of 5-ALA and to 40% following treatment with glycine. Microarray studies of untreated and glycine treated YDL119c mutant yeast revealed increased expression of genes required to synthesize vitamin B6, a cofactor for the Hem1 enzyme in yeast and humans. Morpholino (MO)-mediated knockdown of the zebrafish homologues of SLC25A38 (slc25a38a and slc25a38b) or alas2 correlated with decreased hemoglobin levels by o-dianisidine staining and increased embryonic malformation and mortality. 5-ALA treatment either by addition to the egg water or by injection into the yolk failed to restore hemoglobinization in alas2 morphant embryos. By contrast, the addition of glycine to the egg water resulted in upregulation of hemoglobin to near normal levels in the majority of slc25a38a/b double morphant embryos. Our study demonstrates conserved heme synthesis pathways through evolution across species and further supports the contention that SLC25A38 functions as a glycine transporter. Most significantly, glycine supplementation emerged as an effective therapeutic strategy to restore heme synthesis in CSA caused by SLC25A38 deficiency, providing the rationale to support use of glycine in a clinical trial that is under development for these patients. Disclosures: McMaster: DeNovaMed: Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 405-405
Author(s):  
Yvette Y Yien ◽  
Caiyong Chen ◽  
Jiahai Shi ◽  
Liangtao Li ◽  
Daniel E. Bauer ◽  
...  

Abstract Red cells synthesize large quantities of heme during terminal differentiation. Central to erythropoiesis is the transport and trafficking of iron within the cell. Despite the importance of iron transport during erythroid heme synthesis, the molecules involved in intracellular trafficking of iron are largely unknown. In a screen for genes that are up-regulated during erythroid terminal differentiation, we identified FAM210B, a predicted multi-pass transmembrane mitochondrial protein as an essential component of mitochondrial iron transport during erythroid differentiation. In zebrafish and mice, Fam210b mRNA is enriched in differentiating erythroid cells and liver (fetal and adult), which are tissues that require large amounts of iron for heme synthesis. Here, we report that FAM210B facilitates mitochondrial iron import during erythroid differentiation and is essential for hemoglobin synthesis. Zebrafish are anemic when fam210b is silenced using anti-sense morpholinos (Fig. A). CRISPR knockout of Fam210b caused a heme synthesis defect in differentiating Friend murine erythroleukemia (MEL) cells. PPIX levels in Fam210b deficient cells are normal, demonstrating that Fam210b does not participate in synthesis of the heme tetrapyrrole ring. Consistent with this result, supplementation of Fam210b deficient MEL cells with either aminolevulinic acid, the first committed substrate of the heme synthesis pathway or a chemical analog of protoporphyrin IX failed to chemically complement the heme synthesis defect. While Fam210b was not required for basal housekeeping heme synthesis, Fam210b deficientcells showed defective total cellular and mitochondrial iron uptake during erythroid differentiation (Fig. B). As a result, Fam210b deficient cells had defective hemoglobinization. Supplementation of Fam210b-/- MEL cells with non-transferrin iron chelates restored erythroid differentiation and hemoglobin synthesis; whereas, similar chemical complementation could not be achieved in the Tmem14c-/- cells, which have a primary defect in tetrapyrrole transport. (Fig. C). Our findings reveal that FAM210B is required for optimal mitochondrial iron import during erythroid differentiation for hemoglobin synthesis. It may therefore function as a genetic modifier for mitochondriopathies, anemias or porphyrias. Figure 1. Figure 1. Disclosures Bauer: Biogen: Research Funding; Editas Medicine: Consultancy. Orkin:Editas Inc.: Consultancy.


2002 ◽  
Vol 15 (1) ◽  
pp. 69-74 ◽  
Author(s):  
R. A. Carter ◽  
K. H. Yeoman ◽  
A. Klein ◽  
A. H. F. Hosie ◽  
G. Sawers ◽  
...  

An operon with homology to the dppABCDF genes required to transport dipeptides in bacteria was identified in the N2-fixing symbiont, Rhizobium leguminosarum. As in other bacteria, dpp mutants were severely affected in the import of δ-aminolevulinic acid (ALA), a heme precursor. ALA uptake was antagonized by adding dipeptides, indicating that these two classes of molecule share the same transporter. Mutations in dppABCDF did not affect symbiotic N2 fixation on peas, suggesting that the ALA needed for heme synthesis is not supplied by the plant or that another uptake system functions in the bacteroids. The dppABCDF operon of R. leguminosarum resembles that in other bacteria, with a gap between dppA and dppB containing inverted repeats that may stabilize mRNA and may explain why transcription of dppA alone was higher than that of dppBCDF. The dppABCDF promoter was mapped and is most likely recognized by σ70.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 541-541
Author(s):  
Raymond T Doty ◽  
Xiaowei Yan ◽  
Christopher Lausted ◽  
Zhantao Yang ◽  
Li Liu ◽  
...  

Abstract GATA1 promotes the transcription of ALAS2, the first and rate limiting step of heme synthesis, and the transcription of many other erythroid-specific genes. It also increases its own transcription while silencing proliferation genes active in early progenitors and thus assures that erythroid differentiation correctly initiates. Heme then transcriptionally and translationally upregulates globin to guarantee adequate hemoglobin production in each cell as it matures. In mice lacking the heme exporter, FLVCR1, excess heme and ROS accumulate and erythropoiesis fails at the CFU-E/proerythroblast stage, resulting in a severe macrocytic anemia (HGB 4.4±0.97 vs 14.8±0.57 g/dL; MCV 66.9±6.2 vs 48.4±0.65 fL). To determine how excess heme causes ineffective erythropoiesis and whether heme is key to terminating differentiation in normal erythroid cells, we performed RNA sequencing of single early erythroid cells (BFU-E to basophilic erythroblasts) from wildtype control and Flvcr1-deleted mice and linked this transcription data to the total quantity of Ter119 on that cell. Principal component analysis (PCA) identified 4 transcriptionally unique clusters A, B, C, & D, which contained cells with negative, low, intermediate, and high Ter119 levels respectively. α- and β-globin transcription were highly correlated (r=0.975), occurred in all cells, increased as Ter119 expression increased, and upregulated in Flvcr1-deleted cells. Gene set enrichment analysis (GSEA) comparing control cells to Flvcr1-deleted cells revealed excess heme results in significant downregulation of the hallmark heme metabolism pathway genes (heme biosynthesis and erythroid differentiation genes), upregulation of the ribosome pathway genes, and no alteration of the P53 pathway genes. All eight heme biosynthetic enzyme genes were expressed equivalently in cluster A cells from control and Flvcr1-deleted mice; however expression in Flvcr1-deleted cells was significantly reduced in clusters B-D. Of the 181 erythroid differentiation genes in the hallmark heme pathway, Gata1 had the greatest reduction (67%) in Flvcr1-deleted cells. Coupled two-way clustering analysis (CTWC) identified 150 genes co-regulated with Gata1 including 106 known GATA1 target genes which were all poorly upregulated in Flvcr1-deleted cells in clusters B-D. Independent microarray analysis of mRNA from control and Flvcr1-deleted CD71+ erythroid cells confirmed low Gata1 mRNA and low GATA1-dependent gene expression in the Flvcr1-deleted cells. To determine if excess heme was directly responsible for Gata1 downregulation, we treated K562, HEL-R, and primary human erythroid marrow cells with aminolevulinic acid (ALA) and iron to increase endogenous heme synthesis. In the primary cells, GATA1 protein decreased by 30-43% (p=0.03) within 15 minutes and 66% by 90 minutes (similar decreases observed in cell lines), suggesting that heme disrupts GATA1 protein function resulting in the loss of autoregulation and reduced GATA1 mRNA. Of 88 genes in the ribosome pathway, 73 were significantly upregulated in Flvcr1-deleted cells, including 16 of the 17 ribosomal protein genes linked to Diamond-Blackfan anemia (DBA) or del(5q) myelodysplastic syndrome (MDS). When heme synthesis was induced in primary human erythroid marrow cells with ALA and iron, the transcription of ribosome protein genes such as Rps19, Rps14, and Rpl35 increased, further supporting the concept that heme assures sufficient ribosome production for globin protein synthesis. While P53 activation is a key factor in ineffective erythropoiesis caused by ribosomal protein imbalance (i.e., DBA and del(5q) MDS), GSEA did not reveal any increased activation of the P53 pathway in Flvcr1-deleted cells. To confirm that P53 was not involved in the ineffective erythropoiesis caused by excess heme, we generated mice lacking both P53 and FLVCR1. These double mutant mice had severe macrocytic anemia (HGB 2.4±0.70 g/dL; MCV 56.5±4.3 fL) comparable to mice lacking just FLVCR1. Thus, GATA1 turns on heme synthesis and initiates the erythroid differentiation program. GATA1 with heme assure each cell's appropriate progression. Then heme turns off GATA1 to end differentiation. By linking excess heme to prematurely low GATA1, our data may also explain the ineffective (early termination of) erythropoiesis in DBA and reconcile the observations of Sci Transl Med 8:338ra67, 2016 and Nat Med 20:748, 2014. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 850-857 ◽  
Author(s):  
P Ponka ◽  
HM Schulman

Abstract The inhibition of delta-aminolevulinic acid (ALA) synthase activity by heme is commonly thought to regulate the overall rate of heme synthesis in erythroid cells. However, since heme inhibits erythroid cell uptake of iron from transferrin, we have tested the hypothesis that in reticulocytes heme regulates its own synthesis by controlling the cellular acquisition of iron from transferrin rather than by controlling the synthesis of ALA. We found that hemin added to reticulocytes in vitro inhibits not only the total cell incorporation of 59Fe from transferrin but also the incorporation of [2–14C]-glycine and transferrin-bound 59Fe into heme. However, hemin did not inhibit [2 –14C]-glycine incorporation into protoporphyrin. Furthermore, cycloheximide, which increases the level of non-hemoglobin heme in reticulocytes, also inhibited [2–14C]-glycine into heme but not into protoporphyrin. With high concentrations of ferric pyridoxal benzoylhydrazone (Fe-PBH), which, independent of transferrin and transferrin receptors, can be used as a source of iron for heme synthesis in reticulocytes, significantly more iron is incorporated into heme than from saturating concentrations of Fe-transferrin. This suggests that some step (or steps) in the pathway of iron from extracellular transferrin to protoporphyrin limits the overall rate of heme synthesis in reticulocytes. In addition, hemin in concentrations that inhibit the utilization of transferrin-bound iron for heme synthesis has no effect on the incorporation of iron from Fe-PBH into heme. Our results indicate that in reticulocytes heme inhibits and controls the utilization of iron from transferrin but has no effect on the enzymes of porphyrin biosynthesis and ferrochelatase. This mode of regulation of heme synthesis may be a specific characteristic of the hemoglobin biosynthetic pathway.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 850-857 ◽  
Author(s):  
P Ponka ◽  
HM Schulman

The inhibition of delta-aminolevulinic acid (ALA) synthase activity by heme is commonly thought to regulate the overall rate of heme synthesis in erythroid cells. However, since heme inhibits erythroid cell uptake of iron from transferrin, we have tested the hypothesis that in reticulocytes heme regulates its own synthesis by controlling the cellular acquisition of iron from transferrin rather than by controlling the synthesis of ALA. We found that hemin added to reticulocytes in vitro inhibits not only the total cell incorporation of 59Fe from transferrin but also the incorporation of [2–14C]-glycine and transferrin-bound 59Fe into heme. However, hemin did not inhibit [2 –14C]-glycine incorporation into protoporphyrin. Furthermore, cycloheximide, which increases the level of non-hemoglobin heme in reticulocytes, also inhibited [2–14C]-glycine into heme but not into protoporphyrin. With high concentrations of ferric pyridoxal benzoylhydrazone (Fe-PBH), which, independent of transferrin and transferrin receptors, can be used as a source of iron for heme synthesis in reticulocytes, significantly more iron is incorporated into heme than from saturating concentrations of Fe-transferrin. This suggests that some step (or steps) in the pathway of iron from extracellular transferrin to protoporphyrin limits the overall rate of heme synthesis in reticulocytes. In addition, hemin in concentrations that inhibit the utilization of transferrin-bound iron for heme synthesis has no effect on the incorporation of iron from Fe-PBH into heme. Our results indicate that in reticulocytes heme inhibits and controls the utilization of iron from transferrin but has no effect on the enzymes of porphyrin biosynthesis and ferrochelatase. This mode of regulation of heme synthesis may be a specific characteristic of the hemoglobin biosynthetic pathway.


Sign in / Sign up

Export Citation Format

Share Document