scholarly journals INHIBITION OF TYROSINE KINASE ACTIVITY DECREASES EXPRESSION OF HUMAN SURFACTANT PROTEIN A DURING HUMAN FETAL LUNG DEVELOPMENT IN VITRO.• 357

1996 ◽  
Vol 39 ◽  
pp. 62-62
Author(s):  
Jonathan M Klein ◽  
Louis J DeWild ◽  
Troy A McCarthy
1995 ◽  
Vol 21 (6) ◽  
pp. 917-939 ◽  
Author(s):  
Jonathan M. Klein ◽  
Blayne L. Fritz ◽  
Troy A. McCarthy ◽  
Christine L. Wohlford-Lenane ◽  
Jeanne M. Snyder

2002 ◽  
Vol 282 (3) ◽  
pp. L386-L393 ◽  
Author(s):  
Jonathan M. Klein ◽  
Troy A. McCarthy ◽  
John M. Dagle ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3–5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.


1992 ◽  
Vol 263 (6) ◽  
pp. L634-L644 ◽  
Author(s):  
V. Boggaram ◽  
R. K. Margana

Surfactant protein C (SP-C), a hydrophobic protein of pulmonary surfactant is essential for surfactant function. Toward elucidating molecular mechanisms that mediate regulation of SP-C gene expression in rabbit lung, we isolated and characterized cDNAs encoding rabbit SP-C and studied the regulation of SP-C gene expression during fetal lung development and by adenosine 3',5'-cyclic monophosphate (cAMP) and dexamethasone in fetal lung tissues in vitro. We found that rabbit SP-C is highly homologous to SP-C of other species and is encoded by two mRNAs that differ by an insertion of 31 nucleotides in the 3' untranslated regions. SP-C mRNAs were classified into two types based on the nucleotide sequence; type I represents RNA without the 31 nucleotide insert and comprises approximately 80–90% of total SP-C mRNA content, whereas type II represents RNA containing the insert and comprises approximately 10–20% of total SP-C mRNA content. SP-C mRNAs were induced in a coordinate manner during fetal lung development and by cAMP and dexamethasone in fetal lung tissues in vitro. Southern hybridization analysis of genomic DNA suggested that SP-C mRNAs are encoded by a single gene. Polymerase [corrected] chain reaction-amplification of genomic DNA with oligonucleotide primers flanking the insertional sequence and sequence analysis of amplified DNA showed that SP-C mRNAs are produced by alternative use of 3' splice sites of intron 5 of SP-C gene.


1995 ◽  
Vol 268 (3) ◽  
pp. L481-L490 ◽  
Author(s):  
R. K. Margana ◽  
V. Boggaram

Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for the surface tension-reducing properties of surfactant. In the present study, we isolated and characterized cDNAs encoding rabbit SP-B, and used transcription run-on assays and Northern blot analysis to investigate the role of transcriptional and posttranscriptional mechanisms in the developmental and cAMP and dexamethasone induction of SP-B mRNA. We found two forms of SP-B cDNAs that differed by an insertion of 69 nucleotides in the 3' untranslated regions. We found that transcription across the SP-B gene is nonequimolar and the 3' end of the gene has high levels of antisense transcription. SP-B gene transcription and SP-B mRNA levels increased during fetal lung development. However, increased SP-B mRNA levels could not be accounted for primarily on the basis of increased transcription. These results suggested that enhanced SP-B gene transcription and enhanced SP-B mRNA stability mediate developmental induction of SP-B gene. In rabbit fetal lung in vitro, both dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) and dexamethasone increased SP-B mRNA levels. DBcAMP-dependent increase in SP-B mRNA levels resulted from increased SP-B gene transcription, whereas dexamethasone-dependent increase resulted from combined effects on increased SP-B gene transcription and SP-B mRNA stability. In tissues treated with dexamethasone the half-life (t1/2) of SP-B mRNA increased > 2.5-fold (t1/2 control = 9 h; t1/2 dex-treated = 25 h). These data show that both transcription and mRNA stability regulate induction of SP-B gene expression during fetal lung development and by cAMP and dexamethasone in fetal lung in vitro.


Sign in / Sign up

Export Citation Format

Share Document