scholarly journals IN VIVO AND IN VITRO ANALYSIS OF THE HUMAN LONG CHAIN ACYL COA DEHYDROGENASE(LCAD) GENE PROMOTER REGION. † 889

1996 ◽  
Vol 39 ◽  
pp. 151-151
Author(s):  
Zhifang Zhang ◽  
Yeqing Zhou ◽  
Arnold W Strauss
1996 ◽  
Vol 16 (11) ◽  
pp. 6468-6476 ◽  
Author(s):  
S A Shaaban ◽  
E V Bobkova ◽  
D M Chudzik ◽  
B D Hall

We have studied the in vitro elongation and termination properties of several yeast RNA polymerase III (pol III) mutant enzymes that have altered in vivo termination behavior (S. A. Shaaban, B. M. Krupp, and B. D. Hall, Mol. Cell. Biol. 15:1467-1478, 1995). The pattern of completed-transcript release was also characterized for three of the mutant enzymes. The mutations studied occupy amino acid regions 300 to 325, 455 to 521, and 1061 to 1082 of the RET1 protein (P. James, S. Whelen, and B. D. Hall, J. Biol. Chem. 266:5616-5624, 1991), the second largest subunit of yeast RNA pol III. In general, mutant enzymes which have increased termination require a longer time to traverse a template gene than does wild-type pol III; the converse holds true for most decreased-termination mutants. One increased-termination mutant (K310T I324K) was faster and two reduced termination mutants (K512N and T455I E478K) were slower than the wild-type enzyme. In most cases, these changes in overall elongation kinetics can be accounted for by a correspondingly longer or shorter dwell time at pause sites within the SUP4 tRNA(Tyr) gene. Of the three mutants analyzed for RNA release, one (T455I) was similar to the wild type while the two others (T455I E478K and E478K) bound the completed SUP4 pre-tRNA more avidly. The results of this study support the view that termination is a multistep pathway in which several different regions of the RET1 protein are actively involved. Region 300 to 325 likely affects a step involved in RNA release, while the Rif homology region, amino acids 455 to 521, interacts with the nascent RNA 3' end. The dual effects of several mutations on both elongation kinetics and RNA release suggest that the protein motifs affected by them have multiple roles in the steps leading to transcription termination.


1995 ◽  
Vol 752 (1 Cardiac Growt) ◽  
pp. 370-386 ◽  
Author(s):  
J. L. SAMUEL ◽  
I. DUBUS ◽  
F. FARHADIAN ◽  
F. MAROTTE ◽  
P. OLIVIERO ◽  
...  

2018 ◽  
Vol 475 (8) ◽  
pp. 1473-1489 ◽  
Author(s):  
Yang Xu ◽  
Roman Holic ◽  
Darren Li ◽  
Xue Pan ◽  
Elzbieta Mietkiewska ◽  
...  

Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG. To test this hypothesis, flax LACS and DGAT cDNAs were functionally expressed in Saccharomyces cerevisiae strains to probe their possible involvement in the enrichment of TAG with ALA. Among the identified flax LACSs, LuLACS8A exhibited significantly enhanced specificity for ALA over oleic acid (18:1Δ9cis) or linoleic acid (18:2Δ9cis,12cis). Enhanced α-linolenoyl-CoA specificity was also observed in the enzymatic assay of flax DGAT2 (LuDGAT2-3), which displayed ∼20 times increased preference toward α-linolenoyl-CoA over oleoyl-CoA. Moreover, when LuLACS8A and LuDGAT2-3 were co-expressed in yeast, both in vitro and in vivo experiments indicated that the ALA-containing TAG enrichment process was operative between LuLACS8A- and LuDGAT2-3-catalyzed reactions. Overall, the results support the hypothesis that the cooperation between the reactions catalyzed by LACS8 and DGAT2 may represent a route to enrich ALA production in the flax seed oil.


Sign in / Sign up

Export Citation Format

Share Document