scholarly journals Near-Infrared Spectroscopy Measurement of Oxygen Extraction Fraction and Cerebral Metabolic Rate of Oxygen in Newborn Piglets

2003 ◽  
Vol 54 (6) ◽  
pp. 861-867 ◽  
Author(s):  
Derek W Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee
2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1387-1387
Author(s):  
Adam M Bush ◽  
Matthew Borzage ◽  
Soyoung Choi ◽  
Thomas Coates ◽  
John C Wood

Abstract Introduction Chronic Transfusion Therapy (CTT) has been successful in decreasing stroke frequency in patients with sickle cell disease (SCD). Despite this, indication for CTT is largely based on empirical evidence and the mechanisms by which CTT protects the brain remain unclear. CTT improves oxygen carrying capacity and lowers hemoglobin S%, but the corresponding impact on cerebral blood flow(CBF), cerebral metabolic rate (CMRO2), and oxygen extraction fraction (OEF) is unknown. Understanding the impact of these competing influences in non-transfused (NT) and chronically transfused (CT) SCD patients will inform stroke prevention. Thus, we measured CBF, CMRO2, and OEF, in NT and CT patients with SCD using magnetic resonance imaging (MRI). Methods All patients were recruited with informed consent or assent and this study was approved by the CHLA IRB. Fourteen (6 NT, 8 CT) patients with SCD and 12 healthy ethnicity matched controls (CTL) were studied. Exclusion criteria included pregnancy, previous stroke, acute chest or pain crisis hospitalization within one month. Complete blood count and hemoglobin electrophoresis were performed. Arterial oxygen saturation (SaO2) was measured via peripheral pulse oximetery. CaO2 was calculated as the product of hemoglobin, SaO2 and the oxygen density of hemoglobin (1.36 ml/g). Phase contrast imaging of the carotid and vertebral arteries was used to measure global CBF. T2 Relaxation Under Spin Tagging (TRUST) was used to measured T2 relaxation of blood within the sagittal sinus. T2 relaxation was converted to SvO2 via previously validated calibration curves. OEF represented the difference of SaO2 andSvO2 divided bySaO2. CMRO2 was calculated as the product of CBF and OEF. High resolution, 3D, T1 weighted images were used for brain volume calculation using BrainSuiteñ software. Results Table 1 summarizes the results. Hemoglobin and oxygen content were well matched between transfused and non transfused SCD patients. Cerebral metabolic rate was also nearly identical in the two groups. However, CT patients exhibited 25% higher CBF than NT SCD patients, allowing them to have a normal oxygen extraction fraction ~30%. In contrast, OEF in NT SCD patients was abnormally high (37.8%), suggesting a decreased extraction reserve. Total oxygenation index (TOI) by NIRS also trended lower in NT SCD patients, consistent with the greater oxygen extraction and lower cerebral venous saturations observed. Abstract 1387. TableCTL (reference)NTCTp value (NT vs CT)Hemoglobin (g/dl)13.5 ± 1.229.7 ± 1.259.7 ± 1.05nsCaO2 (umol O2/ml)9.85 ± .996.84 ± 1.176.95 ±.71nsCMRO2 (umol O2/100g/min)193.1 ± 44.9239.7 ± 35.3238.6 ± 38.3nsCBF (ml/100g/min)70.0 ± 12.8101.5 ± 16.6127.1 ± 23.5< 0.05OEF (%)30.0 ± 7.137.8. ± 3.0629.7 ± 7.53< 0.05NIRS TOI56.0 ± 4.0948.5 ± 4.2153.5 ± 8.760.076SvO2 (%)65.6 ± 6.856.2 ± 5.267.1 ± 6.7< 0.05 Discussion: Chronically transfused SCD patients achieve normal brain oxygenation metrics (SvO2, OEF, and NIRS) but require very high CBF to achieve this balance (lowering flow reserve). In contrast, NT SCD patients have smaller increases in CBF but require greater oxygen extraction to meet cerebrovascular demands (lowering extraction reserve). Hemoglobin S mediate changes in oxygen dissociation, blood viscosity, red cell deformability and microvascular damage potentially mediate these differences but their interplay is complicated and requires further study. Disclosures Coates: novartis: Consultancy, Honoraria, Speakers Bureau; shire: Consultancy, Honoraria; apo pharma: Consultancy, Honoraria; acceleron: Consultancy, Honoraria.


BMJ Open ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. e018560 ◽  
Author(s):  
Klaus Ulrik Koch ◽  
Anna Tietze ◽  
Joel Aanerud ◽  
Gorm von Öettingen ◽  
Niels Juul ◽  
...  

IntroductionDuring brain tumour surgery, vasopressor drugs are commonly administered to increase mean arterial blood pressure with the aim of maintaining sufficient cerebral perfusion pressure. Studies of the commonly used vasopressors show that brain oxygen saturation is reduced after phenylephrine administration, but unaltered by ephedrine administration. These findings may be explained by different effects of phenylephrine and ephedrine on the cerebral microcirculation, in particular the capillary transit-time heterogeneity, which determines oxygen extraction efficacy. We hypothesised that phenylephrine is associated with an increase in capillary transit-time heterogeneity and a reduction in cerebral metabolic rate of oxygen compared with ephedrine. Using MRI and positron emission tomography (PET) as measurements in anaesthetised patients with brain tumours, this study will examine whether phenylephrine administration elevates capillary transit-time heterogeneity more than ephedrine, thereby reducing brain oxygenation.Methods and analysisThis is a double-blind, randomised clinical trial including 48 patients scheduled for surgical brain tumour removal. Prior to imaging and surgery, anaesthetised patients will be randomised to receive either phenylephrine or ephedrine infusion until mean arterial blood pressure increases to above 60 mm Hg or 20% above baseline. Twenty-four patients were allocated to MRI and another 24 patients to PET examination. MRI measurements include cerebral blood flow, capillary transit-time heterogeneity, cerebral blood volume, blood mean transit time, and calculated oxygen extraction fraction and cerebral metabolic rate of oxygen for negligible tissue oxygen extraction. PET measurements include cerebral metabolic rate of oxygen, cerebral blood flow and oxygen extraction fraction. Surgery is initiated after MRI/PET measurements and subdural intracranial pressure is measured.Ethics and disseminationThis study was approved by the Central Denmark Region Committee on Health Research Ethics (12 June 2015; 1-10-72-116-15). Results will be disseminated via peer-reviewed publication and presentation at international conferences.Trial registration numberNCT02713087; Pre-results. 2015-001359-60; Pre-results.


2003 ◽  
Vol 48 (15) ◽  
pp. 2405-2418 ◽  
Author(s):  
D A Boas ◽  
G Strangman ◽  
J P Culver ◽  
R D Hoge ◽  
G Jasdzewski ◽  
...  

2002 ◽  
Vol 51 (5) ◽  
pp. 564-570 ◽  
Author(s):  
Derek W Brown ◽  
Paul A Picot ◽  
Jafar Gharavi Naeini ◽  
Roger Springett ◽  
David T Delpy ◽  
...  

2009 ◽  
Vol 65 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Kenneth M Tichauer ◽  
Daisy Y L Wong ◽  
Jennifer A Hadway ◽  
R Jane Rylett ◽  
Ting-Yim Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document