scholarly journals Assessing the Severity of Perinatal Hypoxia-Ischemia in Piglets Using Near-Infrared Spectroscopy to Measure the Cerebral Metabolic Rate of Oxygen

2009 ◽  
Vol 65 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Kenneth M Tichauer ◽  
Daisy Y L Wong ◽  
Jennifer A Hadway ◽  
R Jane Rylett ◽  
Ting-Yim Lee ◽  
...  
2003 ◽  
Vol 48 (15) ◽  
pp. 2405-2418 ◽  
Author(s):  
D A Boas ◽  
G Strangman ◽  
J P Culver ◽  
R D Hoge ◽  
G Jasdzewski ◽  
...  

2009 ◽  
Vol 106 (5) ◽  
pp. 1506-1512 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Jonathan T. Elliott ◽  
Jennifer A. Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

The therapeutic window following perinatal hypoxia-ischemia is brief, and early clinical signs of injury can be subtle. Electroencephalography (EEG) represents the most promising early diagnostic of hypoxia-ischemia; however, some studies have questioned the sensitivity and specificity of EEG. The present study investigated the use of both near-infrared spectroscopy (NIRS) measurements of the cerebral metabolic rate of oxygen (CMRO2) and amplitude-integrated EEG (aEEG) to detect the severity of hypoxia-ischemia after 1 h of reperfusion in newborn piglets (10 insult, 3 control). The CMRO2 was measured before and after 1 h of reperfusion from hypoxia-ischemia, the duration of which was varied from piglet to piglet with a range of 3–24 min, under fentanyl/nitrous oxide anesthesia to mimic awake-like levels of cerebral metabolism. EEG data were collected throughout the study. On average, the CMRO2 and mean aEEG background signals were significantly depressed following the insult ( P < 0.05). Mean CMRO2 and mean aEEG background were 2.61 ± 0.11 ml O2·min−1·100 g−1 and 20.4 ± 2.7 μV before the insult and 1.58 ± 0.09 ml O2·min−1·100 g−1 and 11.8 ± 2.9 μV after 1 h of reperfusion, respectively. Both CMRO2 and aEEG displayed statistically significant correlations with duration of ischemia ( P < 0.05; r = 0.71 and r = 0.89, respectively); however, only CMRO2 was sensitive to milder injuries (<5 min). This study highlights the potential for combining NIRS measures of CMRO2 with EEG in the neonatal intensive care unit to improve early detection of perinatal hypoxia-ischemia.


2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


2002 ◽  
Vol 22 (3) ◽  
pp. 335-341 ◽  
Author(s):  
C. Dean Kurth ◽  
Warren J. Levy ◽  
John McCann

Detection of cerebral hypoxia–ischemia remains problematic in neonates. Near-infrared spectroscopy, a noninvasive bedside technology has potential, although thresholds for cerebral hypoxia–ischemia have not been defined. This study determined hypoxic–ischemic thresholds for cerebral oxygen saturation (Sco2) in terms of EEG, brain ATP, and lactate concentrations, and compared these values with CBF and sagittal sinus oxygen saturation (Svo2). Sixty anesthetized piglets were equipped with near-infrared spectroscopy, EEG, laser-Doppler flowmetry, and a sagittal sinus catheter. After baseline, Sco2 levels of less than 20%, 20% to 29%, 30% to 39%, 40% to 49%, 50% to 59%, 60% to 79%, or 80% or greater were recorded for 30 minutes of normoxic normocapnia, hypercapnic hyperoxia, or bilateral carotid occlusion with or without arterial hypoxia. Brain ATP and lactate concentrations were measured biochemically. Logistic and linear regression determined the Sco2, CBF, and Svo2 thresholds for abnormal EEG, ATP, and lactate findings. Baseline Sco2 was 68 + 5%. The Sco2 thresholds for increased lactate, minor and major EEG change, and decreased ATP were 44 ± 1%, 42 ± 5%, 37 ± 1%, and 33 ± 1%. The Sco2 correlated linearly with Svo2 (r = 0.98) and CBF (r = 0.89), with corresponding Svo2 thresholds of 23%, 20%, 13%, and 8%, and CBF thresholds (% baseline) of 56%, 52%, 42%, and 36%. Thus, cerebral hypoxia-ischemia near-infrared spectroscopy thresholds for functional impairment are Sco2 33% to 44%, a range that is well below baseline Sco2 of 68%, suggesting a buffer between normal and dysfunction that also exists for CBF and Svo2.


2010 ◽  
Vol 109 (3) ◽  
pp. 878-885 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Jonathan T. Elliott ◽  
Jennifer A. Hadway ◽  
David S. Lee ◽  
Ting-Yim Lee ◽  
...  

Improving neurological care of neonates has been impeded by the absence of suitable techniques for measuring cerebral hemodynamics and energy metabolism at the bedside. Currently, near-infrared spectroscopy (NIRS) appears to be the technology best suited to fill this gap, and techniques have been proposed to measure both cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2). We have developed a fast and reliable bolus-tracking method of determining CMRO2 that combines measurements of CBF and cerebral venous oxygenation [venous oxygen saturation (CSvO2)]. However, this method has never been validated at different levels of arterial oxygenation [arterial oxygen saturation (SaO2)], which can be highly variable in the clinical setting. In this study, NIRS measurements of CBF, CSvO2, and CMRO2 were obtained over a range of SaO2 in newborn piglets ( n = 12); CSvO2 values measured directly from sagittal sinus blood samples were collected for validation. Two alternative NIRS methods that measure CSvO2 by manipulating venous oxygenation (i.e., head tilt and partial venous occlusion methods) were also employed for comparison. Statistically significant correlations were found between each NIRS technique and sagittal sinus blood oxygenation ( P < 0.05). Correlation slopes were 1.03 ( r = 0.91), 0.73 ( r = 0.73), and 0.73 ( r = 0.81) for the bolus-tracking, head tilt, and partial venous occlusion methods, respectively. The bolus-tracking technique displayed the best correlation under hyperoxic (SaO2 = 99.9 ± 0.03%) and normoxic (SaO2 = 86.9 ± 6.6%) conditions and was comparable to the other techniques under hypoxic conditions (SaO2 = 40.7 ± 9.9%). The reduced precision of the bolus-tracking method under hypoxia was attributed to errors in CSvO2 measurement that were magnified at low SaO2 levels. In conclusion, the bolus-tracking technique of measuring CSvO2, and therefore CMRO2, is accurate and robust for an SaO2 > 50% but provides reduced accuracy under more severe hypoxic levels.


Sign in / Sign up

Export Citation Format

Share Document