scholarly journals Liqui-Tablet: the Innovative Oral Dosage Form Using the Newly Developed Liqui-Mass Technology

2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Matthew Lam ◽  
Kofi Asare-Addo ◽  
Ali Nokhodchi

AbstractIn this study, an attempt was made to produce Liqui-Tablets for the first time. This was carried out through the compaction of naproxen Liqui-Pellets. The incentive to convert the novel Liqui-Pellet into Liqui-Tablet was due to the array of inherent advantages of the popular and preferred tablet dosage form. The study showed that naproxen Liqui-Tablet could be successfully produced and the rapid drug release rate (100% drug release ~ 20 min) could be achieved under pH 1.2, where naproxen is insoluble. It was observed that the different pH of the dissolution medium affected the trend of drug release from formulations with varying amounts of liquid vehicle. The order of the fastest drug-releasing formulations was different depending on the pH used. The presence of Neusilin US2 showed considerable enhancement in the drug release rate as well as improving Liqui-Tablet robustness and hardness. Furthermore, images from X-ray micro-tomography displayed a uniform distribution of components in the Liqui-Tablet. The accelerated stability studies showed acceptable stability in terms of dissolution profile.

Author(s):  
Harshada Anil Kasar ◽  
Asish Dev ◽  
Subhakanta Dhal

Objective: The objective of this study was to formulate and optimize a chewable formulation of lidocaine hydrochloride using a 32 factorial design for optimized the superdisintegrant concentration.Methods: Various concentrations of sodium starch glycolate (SSG) (13.33 mg, 26.66 mg, and 40 mg) of superdisintegrant and starch (50 mg, 83 mg, and 116.66 mg) were added in the formulation; nine formulations were prepared according to 32 factorial designs and evaluated. The responses were analyzed for analysis of variance using Design-Expert version 10 software. Statistical models were generated for each response parameter. The models were tested for significance. Procedure to manufacture chewable tablets by direct compression was established.Results: The results show that the presence of a superdisintegrant is desirable for chewable formulation. The best-optimized batch F7 found the batch having starch of amount 116.66 mg and SSG 13.33 mg. All the prepared batches of tablets were within the range. Optimized batch F7 showed drug content 102.46±0.0543, wetting time 18±1.7320, friability 0.65±0.0216, and drug release rate 99.97±0.0124% at the end of 30 min.Conclusion: It can be concluded that 32 full factorial design and statistical models can be successfully used to optimize the formulations, and it was concluded that the trial batch F7 is the optimized formulation which compiles official specifications of chewable tablets. The optimized batch was evaluated for thickness, weight variation, hardness, friability, drug dissolution, and stability study for 3 months. The similarity factor was calculated for comparison of dissolution profile before and after stability studies. After 30 min the drug release rate for batch F7 was 98.97% (Table 6). Hence, the results of stability studies reveal that the developed formulation has good stability.


Author(s):  
BHUSHAN A. BHAIRAV ◽  
PRADNYA M. KHANDAGALE ◽  
R. B. SAUDAGAR

Objective: Lisinopril Dihydrate is one of the antihypertensive drug used to control the high blood pressure. Osmotically Controlled release tablet of Lisinopril Dihydrate was performed for reducing dosing frequency and patient compliance.Methods: Elementary osmotic tablets of Lisinopril Dihydrate were developed using Sodium chloride as a key ingredient which gives osmogent property which provides driving force inside the core tablet and which leads to release of the drug. Microcrystalline cellulose used as a release retardant material in the present work. Different formulations were prepared by varying the concentrations using 32 factorial designs. It was applied to see the effect of variables Sodium chloride (X1) and MCC (X2) on the response percentage drug release as a dependent variable. These formulations were evaluated for, Hardness, Flow property, Thickness, Friability, Drug content and In vitro drug release. Tablets were coated with a semipermeable membrane using 5% w/v cellulose acetate(CA) in acetone and PEG 400(1%) used as Plasticizer. Coated Elementary osmotic tablets were drilled for delivery orifice using a standard micro drill of diameter size 0.8 mm.Results: Drug release rate was increased as the increase in the concentration of sodium chloride and release rate decreased on increasing the concentration of MCC. Drug release rate was directly proportional to delivery orifice size. SEM Study carried out for detection of diameter size of the delivery orifice. The FTIR studies demonstrate that there was no interaction between polymer and drug.Conclusion: The optimized formulation was stable for 3 mo of accelerated stability study


Author(s):  
Suchitra Kaushik ◽  
Kamla Pathak

The aim of the present work was to develop immediate release dosage form of the solid dispersion of glimperide (GLIM) for potential enhancement in the bioavailability. The solid dispersions of GLIM were prepared with PEG6000, PVP K30 and Poloxamer 188, in 1:1, 1:3 and 1:5 %w/w ratio by using solvent wetting and solvent melt method. The in vitro dissolution parameters (%DE10min, %DE30min, %DE60min, T50% and DP30) were used to select the optimized solid dispersion that was characterized by IR, PXRD, DSC and SEM. The optimized solid dispersion of GLIM (GSDSM3) was used as drug component for immediate release (IR) tablets that were evaluated for physical and pharmacopoeial parameters. The in vitro drug release studies identified G4 as the optimized tablet with a cumulative drug release (CDR) of 99.34% in 30 min in phosphate buffer, pH 7.4. The CDR was higher than the marketed tablet (91.15%, Amaryl®, Sanofiaventis), However, the f1 and f2 were 10.6 and 52 respectively, which confirmed similarity of the dissolution profile(s). Accelerated stability studies confirmed stability up to 6 months at 40°C/75% condition in the HDPE bottle pack.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Biomaterials ◽  
2001 ◽  
Vol 22 (21) ◽  
pp. 2857-2865 ◽  
Author(s):  
Giacomo Fontana ◽  
Mariano Licciardi ◽  
Silvana Mansueto ◽  
Domenico Schillaci ◽  
Gaetano Giammona

Sign in / Sign up

Export Citation Format

Share Document