Electrochromic iontronic devices based on nanoscale cell membrane-inspired hydrated ion channels in Nafion solid polyelectrolyte

2020 ◽  
Vol 128 (6) ◽  
pp. 68001
Author(s):  
Bo Li ◽  
Jinge Ma ◽  
Yanjie Wang ◽  
Huajing Fang ◽  
Guimin Chen
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


Author(s):  
Machiel J. Zwarts

Essential to all living creatures is the ability to convey information. In addition motor responses are required, for example running. This all is possible due to the ability of specialized cells to conduct information along the cell membrane by means of action potentials (AP) made possible by the charged cell membrane, which has selective permeability for different ions. Voltage and ligand sensitive ion channels are responsible for sudden changes in selective permeability of the membrane resulting in local depolarization of the membrane. The neuromuscular junction is a highly specialized region of the distal motor axon that is responsible for the transferring of activation from nerve to muscle. All these systems and subsystems can fail and a thorough understanding is necessary in order to understand the changes a clinical neurophysiologist can encounter while recording from the human nervous system in cases of disorders of brain, nerve and muscle.


1994 ◽  
Vol 127 (4) ◽  
pp. 935-945 ◽  
Author(s):  
C Erxleben ◽  
H Plattner

A correlated electrophysiological and light microscopic evaluation of trichocyst exocytosis was carried out the Paramecium cells which possess extensive cortical Ca stores with footlike links to the plasmalemma. We used not only intra- but also extracellular recordings to account for polar arrangement of ion channels (while trichocysts can be released from all over the cell surface). With three widely different secretagogues, aminoethyldextran (AED), veratridine and caffeine, similar anterior Nain and posterior Kout currents (both known to be Ca(2+)-dependent) were observed. Direct de- or hyperpolarization induced by current injection failed to trigger exocytosis. For both, exocytotic membrane fusion and secretagogue-induced membrane currents, sensitivity to or availability of Ca2+ appears to be different. Current responses to AED were blocked by W7 or trifluoperazine, while exocytosis remained unaffected. Reducing [Ca2+]o to < or = 0.16 microM (i.e., resting [Ca2+]i) suppressed electrical membrane responses triggered with AED, while we had previously documented normal exocytotic membrane fusion. From this we conclude that the primary effect of AED (as of caffeine) is the mobilization of Ca2+ from the subplasmalemmal pools which not only activates exocytosis (abolished by iontophoretic EGTA injection) but secondarily also spatially segregated plasmalemmal Ca(2+)-dependent ion channels (indicative of subplasmalemmal [Ca2+]i increase, but irrelevant for Ca2+ mobilization). The 45Ca2+ influx previously observed during AED triggering may serve to refill depleted stores. Apart from the insensitivity of our system to depolarization, the mode of direct Ca2+ mobilization from stores by mechanical coupling to the cell membrane (without previous Ca(2+)-influx from outside) closely resembles the model currently discussed for skeletal muscle triads.


2020 ◽  
Vol 20 (7) ◽  
pp. 730-742
Author(s):  
Maki Komiya ◽  
Miki Kato ◽  
Daisuke Tadaki ◽  
Teng Ma ◽  
Hideaki Yamamoto ◽  
...  

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 38-38
Author(s):  
M Weckström

In dim light, photoreceptor cells and subsequent neural elements typically show high absolute sensitivity, implying that both phototransduction and synaptic transmission work at a high gain and even a single photon may produce a large electrical response. However, when there is more light, rapid adaptation at several levels of signal processing ensures that the information channel is not congested, but optimally filled with relevant voltage responses. All this is achieved by carefully tuned mechanisms that include several types of ion channels in the cell membrane. These ion-channel mechanisms have been thoroughly investigated in a few species of invertebrates and vertebrates, and some general principles are being revealed. The membrane capacitance and the resistance of the cell together define the time constant of the membrane, thus the maximum speed for building up a voltage response to light. Both in vertebrate cones and in insect microvillar photoreceptors, phototransduction takes place in an enlarged part of the cell membrane, which implies a large capacitance. This can be counteracted by making the membrane more leaky by opening more ion channels. In insect photoreceptors several types of potassium channels have been identified that perform exactly this kind of function. The types of channels vary according to the required speed of phototransduction, ie depending on the life style of the animal. In diurnal dipteran insects the potassium channels are typically of the slowly inactivating type. This channel type regulates the cell impedance according to the depolarisation caused by light stimulation. In insects active in dim environments, the potassium channels found have been predominantly rapidly inactivating. The function of this type of channels is currently under debate. In vertebrate photoreceptors several potassium channel types, including channels sensitive to intracellular calcium and pH, are expressed in the inner segments and modulate photoresponses. Opening and closing of the potassium channels also generates neural noise and thus degrades the signal-to-noise ratio (SNR). However, if the gain of phototransduction is high enough, the dominant noise comes from photon fluctuations, or from the biochemical transduction machinery, or—in some situations—from spontaneous photon-like events. Channel noise is then insignificant by comparison. Thus the optimisation of the SNR is a trade-off between bandwidth (ie speed) and amplification of the signal, and here the voltage-gated potassium channels are of prime importance.


1994 ◽  
pp. 109-109
Author(s):  
Rie Fujiyama ◽  
Takenori Miyamoto ◽  
Toshihide Sato

2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
A P Quist ◽  
H Lin ◽  
J Thimm ◽  
A Mechler ◽  
I Doudevski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document