Speed and Noise of Neural Membranes: Ion Channel Limitations to Visual Information Transmission

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 38-38
Author(s):  
M Weckström

In dim light, photoreceptor cells and subsequent neural elements typically show high absolute sensitivity, implying that both phototransduction and synaptic transmission work at a high gain and even a single photon may produce a large electrical response. However, when there is more light, rapid adaptation at several levels of signal processing ensures that the information channel is not congested, but optimally filled with relevant voltage responses. All this is achieved by carefully tuned mechanisms that include several types of ion channels in the cell membrane. These ion-channel mechanisms have been thoroughly investigated in a few species of invertebrates and vertebrates, and some general principles are being revealed. The membrane capacitance and the resistance of the cell together define the time constant of the membrane, thus the maximum speed for building up a voltage response to light. Both in vertebrate cones and in insect microvillar photoreceptors, phototransduction takes place in an enlarged part of the cell membrane, which implies a large capacitance. This can be counteracted by making the membrane more leaky by opening more ion channels. In insect photoreceptors several types of potassium channels have been identified that perform exactly this kind of function. The types of channels vary according to the required speed of phototransduction, ie depending on the life style of the animal. In diurnal dipteran insects the potassium channels are typically of the slowly inactivating type. This channel type regulates the cell impedance according to the depolarisation caused by light stimulation. In insects active in dim environments, the potassium channels found have been predominantly rapidly inactivating. The function of this type of channels is currently under debate. In vertebrate photoreceptors several potassium channel types, including channels sensitive to intracellular calcium and pH, are expressed in the inner segments and modulate photoresponses. Opening and closing of the potassium channels also generates neural noise and thus degrades the signal-to-noise ratio (SNR). However, if the gain of phototransduction is high enough, the dominant noise comes from photon fluctuations, or from the biochemical transduction machinery, or—in some situations—from spontaneous photon-like events. Channel noise is then insignificant by comparison. Thus the optimisation of the SNR is a trade-off between bandwidth (ie speed) and amplification of the signal, and here the voltage-gated potassium channels are of prime importance.

2018 ◽  
Author(s):  
Anuj Guruacharya

I have created an online tool and an R library that simulates biophysics of voltage-gated ion channels. It is made publicly available as an R library called Panama at github.com/anuj2054/panama and as a web app at neuronsimulator.com. A need for such a tool was observed after surveying available software packages. I found that the available packages are either not robust enough to simulate multiple ion channels, too complicated, usable only as desktop software, not optimized for mobile devices, not interactive, lacking intuitive graphical controls, or not appropriate for undergraduate education. My app simulates the physiology of 11 different channels - voltage-gated sodium, potassium, and chloride channels; channels causing A-current, M-current, and After-HyperPolarization (AHP) current; calcium-activated potassium channels; low threshold T type calcium channels and high threshold L type calcium channels; leak sodium and leak potassium channels. It can simulate these channels under both current clamp and voltage clamp conditions. As we change the input values on the app, the output can be instantaneously visualized on the web browser and downloaded as a data table to be further analyzed in a spreadsheet program. The app is a first of its kind, mobile-friendly and touch-screen-friendly online tool that can be used to teach undergraduate neuroscience classes. It can also be used by researchers on their local computers as part of an R library. It has intuitive touch-optimized controls, instantaneous graphical output, and yet is pedagogically robust for education and casual research purposes.Neuroscience education, ion channel biophysics, Hodgkin-Huxley simulation, web app for neuroscience


2012 ◽  
Author(s):  
◽  
Simone Temporal

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The pyloric network of the crustacean stomatogastric ganglion (STG) is a central pattern generator that requires descending modulation for normal ongoing rhythmic activity. However, the pyloric rhythm is capable of functional recovery after removal of descending inputs. We used the STG to determine whether or not correlated mRNA ion channels are dependent on neuromodulation. Our hypothesis is that relationships between ion channels are dependent on neuromodulation, not activity. To investigate this, we first measured mRNA expression levels of three calcium channels (Ca1A, Ca1D and T-type-related channel) and two potassium channels (shal and shab), of PD cells to investigate how channel transcription may be modified to influence recovery of burst activity. We collected single PD neurons from both recovered and time-matched control preparations and quantified channel transcript levels with quantitative real-time RT-PCR. There was widespread correlation between all three calcium channels and the two potassium channels in PD cells from intact networks. Specifically, the strongest relationships were between all three calcium channels and the shal channel, which carries an A-type transient potassium current (p[less-than]0.005; R2[greater-than]0.5). Furthermore, our results show that following recovery, there are no significant changes in overall mRNA abundance across all channel types. However, there was a striking lack of any correlation between measured channel types in PD cells following recovery. These results indicate that recovered, decentralized networks do not regain rhythmicity simply by increasing or decreasing mRNA expression for a given channel or channels. In order to determine whether ion channel correlations are dependent on neuromodulation or activity, we decoupled neuromodulatory and activity inputs. We found that preparations with neuromodulatory inputs maintained relationships between mRNA channels while activity input alone did not. Further, addition of pilocarpine, the muscarinic agonist and modulator, to decentralized preparations maintained the same correlations as those found in preparations that only had neuromodulatory input. To determine whether loss of correlations affected network function, we compared the pyloric burst frequency of the different conditions. We found that the pyloric burst frequency decreased under conditions that lost correlations between ion channels due to the removal of neuromodulation. Together, these results indicate that neuromodulation maintains ion channel correlations, which are important to proper network function. They also suggest a possible novel role of neuromodulation in the regulation of gene expression.


ALGAE ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 315-326
Author(s):  
Ilya Pozdnyakov ◽  
Olga Matantseva ◽  
Sergei Skarlato

Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5- trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of Gprotein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.


Author(s):  
Ahmed Mahmood Khudhur ◽  
Ahmed N Abdalla

The data processing fundamental problem affects all aspects of nervous-system function by the noise of ion channels. The conducting and non conducting of ion channels depends on random transitions of channel noise, which affect the states of several numbers of gates in every single individual ion channel. This paper, introduce a new ion channel model in the neuron with noisy input current as approximations of the HH model. It briefly introduces the ion channel based on stochastic Hodgkin-Huxley model. The method is able to fully constrain the HH model and obtain all models capable of reproducing the data. Therefore, this method overcomes the limitations of other parameter estimation methods. The stochastic Markov process method is simply applied to simulate each gate individually to determine the relationship between channel noise and the spike frequency.


Author(s):  
Gordon L. Fain

Sensory Transduction provides a thorough and easily accessible introduction to the mechanisms that each of the different kinds of sensory receptor cell uses to convert a sensory stimulus into an electrical response. Beginning with an introduction to methods of experimentation, sensory specializations, ion channels, and G-protein cascades, it provides up-to-date reviews of all of the major senses, including touch, hearing, olfaction, taste, photoreception, and the “extra” senses of thermoreception, electroreception, and magnetoreception. By bringing mechanisms of all of the senses together into a coherent treatment, it facilitates comparison of ion channels, metabotropic effector molecules, second messengers, and other components of signal pathways that are common themes in the physiology of the different sense organs. With its many clear illustrations and easily assimilated exposition, it provides an ideal introduction to current research for the professional in neuroscience, as well as a text for an advanced undergraduate or graduate-level course on sensory physiology.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


2012 ◽  
Vol 426 (4) ◽  
pp. 511-515 ◽  
Author(s):  
Elena Petroff ◽  
Vladislav Snitsarev ◽  
Huiyu Gong ◽  
Francois M. Abboud

2021 ◽  
Vol 22 (2) ◽  
pp. 515
Author(s):  
Jaroslaw Szczepaniak ◽  
Joanna Jagiello ◽  
Mateusz Wierzbicki ◽  
Dorota Nowak ◽  
Anna Sobczyk-Guzenda ◽  
...  

The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.


2003 ◽  
Vol 2 (1) ◽  
pp. 181-190 ◽  
Author(s):  
Stephen K. Roberts

ABSTRACT In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the “filamentous” polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K+ channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K+ channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K+ efflux. NcTOKA channel gating was sensitive to extracellular K+ such that channel activation was dependent on the reversal potential for K+. However, expression of NcTOKA was able to overcome the K+ auxotrophy of a yeast mutant missing the K+ uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K+ influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K+ currents at potentials negative of EK. NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca2+, verapamil, quinine, and TEA+ but was insensitive to Cs+, 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.


1991 ◽  
Vol 261 (5) ◽  
pp. F808-F814 ◽  
Author(s):  
H. Matsunaga ◽  
N. Yamashita ◽  
Y. Miyajima ◽  
T. Okuda ◽  
H. Chang ◽  
...  

We used the patch-clamp technique to clarify the nature of ion channels in renal mesangial cells in culture. In the cell-attached mode most patches were silent in the absence of agonists. In some patches a 25-pS nonselective channel was observed. This 25-pS cation channel was consistently observed in inside-out patches, and it was activated by intracellular Ca2+. Excised patch experiments also revealed the existence of a 40-pS K+ channel, which was activated by intracellular Ca2+. This 40-pS K+ channel was observed infrequently in the cell-attached mode. The activities of both channels were increased by arginine vasopressin or angiotensin II, resulting from an increase in intracellular Ca2+ concentration.


Sign in / Sign up

Export Citation Format

Share Document