scholarly journals AFM Imaging of 3D Conformations and Surface Energetics of Reconstituted Ion Channels: Mimicking Lipid Bilayer Cell Membrane

2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
A P Quist ◽  
H Lin ◽  
J Thimm ◽  
A Mechler ◽  
I Doudevski ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 323
Author(s):  
Martina Nicoletti ◽  
Letizia Chiodo ◽  
Alessandro Loppini

Mechanosensing is a key feature through which organisms can receive inputs from the environment and convert them into specific functional and behavioral outputs. Mechanosensation occurs in many cells and tissues, regulating a plethora of molecular processes based on the distribution of forces and stresses both at the cell membrane and at the intracellular organelles levels, through complex interactions between cells’ microstructures, cytoskeleton, and extracellular matrix. Although several primary and secondary mechanisms have been shown to contribute to mechanosensation, a fundamental pathway in simple organisms and mammals involves the presence of specialized sensory neurons and the presence of different types of mechanosensitive ion channels on the neuronal cell membrane. In this contribution, we present a review of the main ion channels which have been proven to be significantly involved in mechanotransduction in neurons. Further, we discuss recent studies focused on the biological mechanisms and modeling of mechanosensitive ion channels’ gating, and on mechanotransduction modeling at different scales and levels of details.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550025 ◽  
Author(s):  
Seyed Hanif Mahboobi ◽  
Alireza Taheri ◽  
Hossein Nejat Pishkenari ◽  
Ali Meghdari ◽  
Mahya Hemmat

Determination of an injection condition which is minimally invasive to the cell membrane is of great importance in drug and gene delivery. For this purpose, a series of molecular dynamics (MD) simulations are conducted to study the penetration of a carbon nanotube (CNT) into a pure POPC cell membrane under various injection velocities, CNT tilt angles and chirality parameters. The simulations are nonequilibrium and all-atom. The force and stress exerted on the nanotube, deformation of the lipid bilayer, and strain of the CNT atoms are inspected during the simulations. We found that a lower nanotube velocity results in successfully entering the membrane with minimum disruption in the CNT and the lipid bilayer, and CNT's chirality distinctly affects the results. Moreover, it is shown that the tilt angle of the CNT influences the nanotube's buckling and may result in destroying the membrane structure during the injection process.


Author(s):  
Machiel J. Zwarts

Essential to all living creatures is the ability to convey information. In addition motor responses are required, for example running. This all is possible due to the ability of specialized cells to conduct information along the cell membrane by means of action potentials (AP) made possible by the charged cell membrane, which has selective permeability for different ions. Voltage and ligand sensitive ion channels are responsible for sudden changes in selective permeability of the membrane resulting in local depolarization of the membrane. The neuromuscular junction is a highly specialized region of the distal motor axon that is responsible for the transferring of activation from nerve to muscle. All these systems and subsystems can fail and a thorough understanding is necessary in order to understand the changes a clinical neurophysiologist can encounter while recording from the human nervous system in cases of disorders of brain, nerve and muscle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Minako Hirano ◽  
Masahisa Tomita ◽  
Chikako Takahashi ◽  
Nobuyuki Kawashima ◽  
Toru Ide

AbstractArtificial lipid bilayer single-channel recording technique has been employed to determine the biophysical and pharmacological properties of various ion channels. However, its measurement efficiency is very low, as it requires two time-consuming processes: preparation of lipid bilayer membranes and incorporation of ion channels into the membranes. In order to address these problems, we previously developed a technique based on hydrophilically modified gold probes on which are immobilized ion channels that can be promptly incorporated into the bilayer membrane at the same time as the membrane is formed on the probes’ hydrophilic area. Here, we improved further this technique by optimizing the gold probe and developed an automated channel current measurement system. We found that use of probes with rounded tips enhanced the efficiency of channel current measurements, and introducing a hydrophobic area on the probe surface, beside the hydrophilic one, further increased measurement efficiency by boosting membrane stability. Moreover, we developed an automated measurement system using the optimized probes; it enabled us to automatically measure channel currents and analyze the effects of a blocker on channel activity. Our study will contribute to the development of high-throughput devices to identify drug candidates affecting ion channel activity.


2020 ◽  
Vol 128 (6) ◽  
pp. 68001
Author(s):  
Bo Li ◽  
Jinge Ma ◽  
Yanjie Wang ◽  
Huajing Fang ◽  
Guimin Chen

Nanoscale ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 4503-4514 ◽  
Author(s):  
Zhengyang Xue ◽  
Quan Sun ◽  
Li Zhang ◽  
Zhengzhong Kang ◽  
Lijun Liang ◽  
...  

Translocation free energy of model drugs permeating into the lipid bilayer could be significantly reduced with the assistance of GQDs.


Nanoscale ◽  
2020 ◽  
Vol 12 (26) ◽  
pp. 14021-14036
Author(s):  
Nurul ‘Ain Azman ◽  
Laurent Bekale ◽  
Thanh Xuan Nguyen ◽  
James Chen Yong Kah

CGMD showed that ligand mechanical stability which resulted in the exposure of the hydrophobic AuNR core, disrupted the lipid bilayer organization. The damage was confirmed using hemolysis assay whereby lipid bilayer disruption resulted in the release of hemoglobin.


ACS Omega ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 6059-6067 ◽  
Author(s):  
Huxiang Guo ◽  
Qiguo Xing ◽  
Renliang Huang ◽  
Dong Woog Lee ◽  
Rongxin Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document