Engineering the sensitivity of macroscopic physical systems to variations in the fine-structure constant

Author(s):  
Beata Zjawin ◽  
Marcin Bober ◽  
Roman Ciuryło ◽  
Daniel Lisak ◽  
Michał Zawada ◽  
...  

Abstract Experiments aimed at searching for variations in the fine-structure constant α are based on spectroscopy of transitions in microscopic bound systems, such as atoms and ions, or resonances in optical cavities. The sensitivities of these systems to variations in α are typically on the order of unity and are fixed for a given system. For heavy atoms, highly charged ions and nuclear transitions, the sensitivity can be increased by benefiting from the relativistic effects and favorable arrangement of quantum states. This article proposes a new method for controlling the sensitivity factor of macroscopic physical systems. Specific concepts of optical cavities with tunable sensitivity to α are described. These systems show qualitatively different properties from those of previous studies of the sensitivity of macroscopic systems to variations in α, in which the sensitivity was found to be fixed and fundamentally limited to an order of unity. Although possible experimental constraints attainable with the specific optical cavity arrangements proposed in this article do not yet exceed the present best constraints on α variations, this work paves the way for developing new approaches to searching for variations in the fundamental constants of physics.

2009 ◽  
Vol 87 (1) ◽  
pp. 25-33 ◽  
Author(s):  
V V Flambaum ◽  
V A Dzuba

The search for variation of the fundamental constants such as the fine-structure constant α (α = e2/hc) and the ratios of fundamental masses (for example, electron-to-proton mass ratio μ = me/mp) is reviewed. Strong emphasis is given to establishing the relationships between the change in the measured frequencies of atomic, molecular, or nuclear transitions and the corresponding change of the fundamental constants. Transitions in which the sensitivity of the frequency change to the variation of the fine-structure constant is strongly enhanced are discussed and most recent experimental results are presented. Most attention is given to the use of atomic, molecular, and nuclear transitions in the study of quasar absorption spectra and in atomic clock experiments.PACS Nos.: 31.25.Eb, 31.25.Jf


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


2012 ◽  
Vol 85 (10) ◽  
Author(s):  
Eloisa Menegoni ◽  
Maria Archidiacono ◽  
Erminia Calabrese ◽  
Silvia Galli ◽  
C. J. A. P. Martins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document