scholarly journals Large spins in external fields of cubic group symmetry

1998 ◽  
Vol 44 (5) ◽  
pp. 539-544 ◽  
Author(s):  
V. A Kalatsky ◽  
V. L Pokrovsky
1998 ◽  
Vol 80 (6) ◽  
pp. 1304-1307 ◽  
Author(s):  
V. A. Kalatsky ◽  
E. Müller-Hartmann ◽  
V. L. Pokrovsky ◽  
G. S. Uhrig

1999 ◽  
Vol 60 (3) ◽  
pp. 1824-1844 ◽  
Author(s):  
V. A. Kalatsky ◽  
V. L. Pokrovsky

Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


Author(s):  
Raja Subramanian ◽  
Kenneth S. Vecchio

The structure of stacking faults and partial dislocations in iron pyrite (FeS2) have been studied using transmission electron microscopy. Pyrite has the NaCl structure in which the sodium ions are replaced by iron and chlorine ions by covalently-bonded pairs of sulfur ions. These sulfur pairs are oriented along the <111> direction. This covalent bond between sulfur atoms is the strongest bond in pyrite with Pa3 space group symmetry. These sulfur pairs are believed to move as a whole during dislocation glide. The lattice structure across these stacking faults is of interest as the presence of these stacking faults has been preliminarily linked to a higher sulfur reactivity in pyrite. Conventional TEM contrast analysis and high resolution lattice imaging of the faulted area in the TEM specimen has been carried out.


1983 ◽  
Vol 44 (C7) ◽  
pp. C7-193-C7-208 ◽  
Author(s):  
F. Penent ◽  
C. Chardonnet ◽  
D. Delande ◽  
F. Biraben ◽  
J. C. Gay

2020 ◽  
Author(s):  
Xiaojing Xia ◽  
Anupum Pant ◽  
Xuezhe Zhou ◽  
Elena Dobretsova ◽  
Alex Bard ◽  
...  

Fluoride crystals, due to their low phonon energies, are attractive hosts of trivalent lanthanide ions for applications in upconverting phosphors, quantum information science, and solid-state laser refrigeration. In this article, we report the rapid, low-cost hydrothermal synthesis of potassium lutetium fluoride (KLF) microcrystals for applications in solid-state laser refrigeration. Four crystalline phases were synthesized, namely orthorhombic K<sub>2</sub>LuF<sub>5</sub> (Pnma), trigonal KLuF<sub>4</sub> (P3<sub>1</sub>21), orthorhombic KLu<sub>2</sub>F<sub>7</sub> (Pna2<sub>1</sub>), and cubic KLu<sub>3</sub>F<sub>10</sub> (Fm3m), with each phase exhibiting unique microcrystalline morphologies. Luminescence spectra and emission lifetimes of the four crystalline phases were characterized based on the point-group symmetry of trivalent cations. Laser refrigeration was measured by observing both the optomechanical eigenfrequencies of microcrystals on cantilevers in vacuum, and also the Brownian dynamics of optically trapped microcrystals in water. Among all four crystalline phases, the most significant cooling was observed for 10%Yb:KLuF<sub>4</sub> with cooling of 8.6 $\pm$ 2.1 K below room temperature. Reduced heating was observed with 10%Yb:K<sub>2</sub>LuF<sub>5</sub>


2010 ◽  
Vol 7 ◽  
pp. 191-201
Author(s):  
I.Sh. Nasibullayev ◽  
O.V. Urina

Plane stationary shear flow of the nematic liquid crystal with weak surface anchoring is investigated. The effect of temperature, external fields, and the nature of the surface coupling on the formation of orientation instabilities is investigated.


Sign in / Sign up

Export Citation Format

Share Document