surface anchoring
Recently Published Documents


TOTAL DOCUMENTS

324
(FIVE YEARS 59)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Varshini Jayantha Kumar ◽  
Jian-Zhong Wu ◽  
Martyna Judd ◽  
Elodie ROUSSET ◽  
Marcus Korb ◽  
...  

A series of 6-oxo verdazyl radicals functionalised at the 1- and 5-positions by methyl, thiomethyl and iodo groups were synthesised using conventional strategies. Facile Sonogashira cross-coupling reactions of terminal alkynes...


Author(s):  
Satoshi Aya ◽  
Junichi Kogo ◽  
Fumito Araoka ◽  
Osamu Haba ◽  
Koichiro Yonetake

Combinations of different geometry and the surface anchoring conditions give rise to the diversity of topological structures in nematic colloid systems. Tuning these parameters in a single system offers possibilities...


2021 ◽  
Author(s):  
Varshini Kumar ◽  
Jian-Zhong Wu ◽  
Martyna Judd ◽  
Elodie Rousset ◽  
Marcus Korb ◽  
...  

A series of 6-oxo verdazyl radicals functionalised at the 1- and 5-positions by methyl, thiomethyl and iodo groups were synthesised using conventional strategies. Facile Sonogashira cross-coupling reactions of terminal alkynes with the diiodo analogue were used for synthetic elaboration of the verdazyl core structure with π-conjugated ethynyl groups. The radicals were characterised by EPR spectroscopy, single-crystal X-ray diffraction, cyclic voltammetry and optical spectroscopy. The chemically and electrochemically reversible oxidation and reduction of these radicals within a convenient redox window permitted further studies on the closed-shell cationic and anionic forms using spectroelectrochemical methods, supported by (TD-)DFT calculations.


Author(s):  
Razvan-Dumitru Ceuca

We consider a Landau-de Gennes model for a connected cubic lattice scaffold in a nematic host, in a dilute regime. We analyse the homogenised limit for both cases in which the lattice of embedded particles presents or not cubic symmetry and then we compute the free effective energy of the composite material. In the cubic symmetry case, we impose different types of surface anchoring energy densities, such as quartic, Rapini-Papoular or more general versions, and, in this case, we show that we can tune any coefficient from the corresponding bulk potential, especially the phase transition temperature. In the case with loss of cubic symmetry, we prove similar results in which the effective free energy functional has now an additional term, which describes a change in the preferred alignment of the liquid crystal particles inside the domain. Moreover, we compute the rate of convergence for how fast the surface energies converge to the homogenised one and also for how fast the minimisers of the free energies tend to the minimiser of the homogenised free energy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sabrina Spiller ◽  
Franziska Clauder ◽  
Kathrin Bellmann-Sickert ◽  
Annette G. Beck-Sickinger

Abstract Implant design has evolved from biochemically inert substrates, minimizing cell and protein interaction, towards sophisticated bioactive substrates, modulating the host response and supporting the regeneration of the injured tissue. Important aspects to consider are the control of cell adhesion, the discrimination of bacteria and non-local cells from the desired tissue cell type, and the stimulation of implant integration and wound healing. Here, the extracellular matrix acts as a role model providing us with inspiration for sophisticated designs. Within this scope, small bioactive peptides have proven to be miscellaneously deployable for the mediation of surface, cell and matrix interactions. Combinations of adhesion ligands, proteoglycans, and modulatory proteins should guide multiple aspects of the regeneration process and cooperativity between the different extracellular matrix components, which bears the chance to maximize the therapeutic efficiency and simultaneously lower the doses. Hence, efforts to include multiple of these factors in biomaterial design are well worth. In the following, multifunctional implant coatings based on bioactive peptides are reviewed and concepts to implement strong surface anchoring for stable cell adhesion and a dynamic delivery of modulator proteins are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2292
Author(s):  
Dejan Bošnjaković ◽  
Mathias Fleisch ◽  
Xinzheng Zhang ◽  
Irena Drevenšek-Olenik

We present an experimental and theoretical investigation of the optical diffractive properties of electrically tuneable optical transmission gratings assembled as stacks of periodic slices from a conventional nematic liquid crystal (E7) and a standard photoresist polymer (SU-8). The external electric field causes a twist-type reorientation of the LC molecules toward a perpendicular direction with respect to initial orientation. The associated field-induced modification of the director field is determined numerically and analytically by minimization of the Landau–de Gennes free energy. The optical diffraction properties of the associated periodically modulated structure are calculated numerically on the basis of rigorous coupled-wave analysis (RCWA). A comparison of experimental and theoretical results suggests that polymer slices provoke planar surface anchoring of the LC molecules with the inhomogeneous surface anchoring energy varying in the range 5–20 μJ/m2. The investigated structures provide a versatile approach to fabricating LC-polymer-based electrically tuneable diffractive optical elements (DOEs).


2021 ◽  
Vol 33 (7) ◽  
pp. 072005
Author(s):  
Paul Steffen ◽  
Eric Stellamanns ◽  
Anupam Sengupta
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
H. Nilanthi Padmini ◽  
Mojtaba Rajabi ◽  
Sergij V. Shiyanovskii ◽  
Oleg D. Lavrentovich

Spatially-varying director fields have become an important part of research and development in liquid crystals. Characterization of the anchoring strength associated with a spatially-varying director is difficult, since the methods developed for a uniform alignment are seldom applicable. Here we characterize the strength of azimuthal surface anchoring produced by the photoalignment technique based on plasmonic metamsaks. The measurements used photopatterned arrays of topological point defects of strength +1 and −1 in thin layers of a nematic liquid crystal. The integer-strength defects split into pairs of half-integer defects with lower elastic energy. The separation distance between the split pair is limited by the azimuthal surface anchoring, which allows one to determine the strength of the latter. The strength of the azimuthal anchoring is proportional to the UV exposure time during the photoalignment of the azobenzene layer.


Sign in / Sign up

Export Citation Format

Share Document