scholarly journals Loss of Synaptonemal Complex Protein-1, a Synaptonemal Complex Protein, Contributes to the Initiation of Follicular Assembly in the Developing Rat Ovary

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5267-5277 ◽  
Author(s):  
Alfonso Paredes ◽  
Cecilia Garcia-Rudaz ◽  
Bredford Kerr ◽  
Veronica Tapia ◽  
Gregory A. Dissen ◽  
...  

In the rat ovary, germ and somatic cells become organized into primordial follicles 48–72 h after birth. Although several genes have been implicated in the control of early follicular growth, less is known about the factors involved in the formation of primordial follicles. Using the method of differential display of mRNAs, we found several genes differentially expressed at the time of follicular assembly. One of them encodes synaptonemal complex protein-1 (SCP1), a core component of the protein complex that maintains recombining chromosomes together during prophase I of the first meiotic division in germ cells. This association, evident during the pachytene stage, ends when chromosomal desynapsis begins in the diplotene stage at the end of prophase I. Oocytes become arrested in the diplotene/dictate stage before becoming enclosed into primordial follicles, suggesting that oocytes must complete meiotic prophase I before becoming competent to direct follicle assembly. We now show that attainment of the diplotene stage results in follicular formation. In developing rat ovaries, SCP1 mRNA expression is confined to oocytes and decreases precipitously within 24 h after birth, preceding the organization of primordial follicles. The premature loss of SCP1, achieved via treatment with an antisense oligodeoxynucleotide targeting SCP1 mRNA, resulted in more oocytes reaching the diplotene stage, as evidenced by a decrease in the number of oocytes containing germ cell nuclear antigen-1 (a nuclear protein whose expression ceases in diplotene) and an increase in the number of oocytes expressing MSY2 (a cytoplasmic Y box protein expressed in oocytes that have become arrested in diplotene). SCP1-deficient ovaries exhibited an increased number of newly formed follicles, suggesting that completion of meiotic prophase I endows oocytes with the ability to orchestrate follicular assembly.

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Deion M. Burks ◽  
Margaret R. McCoy ◽  
Sudipta Dutta ◽  
Connie J. Mark-Kappeler ◽  
Patricia B. Hoyer ◽  
...  

Abstract Background Infertility is linked to depletion of the primordial follicle pool consisting of individual oocytes arrested at the diplotene stage of meiotic prophase I surrounded by granulosa cells. Primordial germ cells, the oocyte precursors, begin to differentiate during embryonic development. These cells migrate to the genital ridge and begin mitotic divisions, remaining connected, through incomplete cytokinesis, in clusters of synchronously dividing oogonia known as germ cell cysts. Subsequently, they enter meiosis, become oocytes and progress through prophase I to the diplotene stage. The cysts break apart, allowing individual oocytes to be surrounded by a layer of granulosa cells, forming primordial follicles each containing a diplotene arrested oocyte. A large number of oocytes are lost coincident with cyst breakdown, and may be important for quality control of primordial follicle formation. Exposure of developing ovaries to exogenous hormones can disrupt cyst breakdown and follicle formation, but it is unclear if hormones affect progression of oocytes through prophase I of meiosis. Methods Fetal ovaries were treated in organ culture with estradiol, progesterone, or both hormones, labeled for MSY2 or Synaptonemal complex protein 3 (SYCP3) using whole mount immunocytochemistry and examined by confocal microscopy. Meiotic prophase I progression was also followed using the meiotic surface spread technique. Results MSY2 expression in oocytes was reduced by progesterone but not estradiol or the hormone combination. However, while MSY2 expression was upregulated during development it was not a precise marker for the diplotene stage. We also followed meiotic prophase I progression using antibodies against SYCP3 using two different methods, and found that the percent of oocytes at the pachytene stage peaked at postnatal day 1. Finally, estradiol and progesterone treatment together but not either alone in organ culture increased the percent of oocytes at the pachytene stage. Conclusions We set out to examine the effects of hormones on prophase I progression and found that while MSY2 expression was reduced by progesterone, MSY2 was not a precise diplotene stage marker. Using antibodies against SYCP3 to identify pachytene stage oocytes we found that progesterone and estradiol together delayed progression of oocytes through prophase I.


PLoS Genetics ◽  
2014 ◽  
Vol 10 (11) ◽  
pp. e1004757 ◽  
Author(s):  
Heather Brockway ◽  
Nathan Balukoff ◽  
Martha Dean ◽  
Benjamin Alleva ◽  
Sarit Smolikove

1990 ◽  
Vol 14 ◽  
pp. 61
Author(s):  
H OFFENBERG ◽  
C HEYTING ◽  
M VANAALDEREN ◽  
E REDEKE ◽  
A DIETRICH ◽  
...  

2013 ◽  
Vol 24 (7) ◽  
pp. 1053-1067 ◽  
Author(s):  
Amy M. Clemons ◽  
Heather M. Brockway ◽  
Yizhi Yin ◽  
Bhavatharini Kasinathan ◽  
Yaron S. Butterfield ◽  
...  

During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.


2019 ◽  
Author(s):  
Rong Hua ◽  
Huafang Wei ◽  
Chao Liu ◽  
Yue Zhang ◽  
Siyu Liu ◽  
...  

Abstract During meiosis, telomere attachment to the inner nuclear envelope is required for proper pairing of homologous chromosomes and recombination. Here, we identified F-box protein 47 (FBXO47) as a regulator of the telomeric shelterin complex that is specifically expressed during meiotic prophase I. Knockout of Fbxo47 in mice leads to infertility in males. We found that the Fbxo47 deficient spermatocytes are unable to form a complete synaptonemal complex. FBXO47 interacts with TRF1/2, and the disruption of Fbxo47 destabilizes TRF2, leading to unstable telomere attachment and slow traversing through the bouquet stage. Our findings uncover a novel mechanism of FBXO47 in telomeric shelterin subunit stabilization during meiosis.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Hasanuzzaman Bhuiyan ◽  
Gunilla Dahlfors ◽  
Karin Schmekel

Abstract The synaptonemal complex (SC) keeps the synapsed homologous chromosomes together during pachytene in meiotic prophase I. Structures that resemble stacks of SCs, polycomplexes, are sometimes found before or after pachytene. We have investigated ndt80 mutants of yeast, which arrest in pachytene. SCs appear normal in spread chromosome preparations, but are only occasionally found in intact nuclei examined in the electron microscope. Instead, large polycomplexes occur in almost every ndt80 mutant nucleus. Immunoelectron microscopy using DNA antibodies show strong preferential labeling to the lateral element parts of the polycomplexes. In situ hybridization using chromosome-specific probes confirms that the chromosomes in ndt80 mutants are paired and attached to the SCs. Our results suggest that polycomplexes can be involved in binding of chromosomes and possibly also in synapsis.


Sign in / Sign up

Export Citation Format

Share Document