meiotic prophase i
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 4)

Toxicology ◽  
2021 ◽  
pp. 153061
Author(s):  
Jinxia Zhai ◽  
Wenfeng Geng ◽  
Taifa Zhang ◽  
Yu Wei ◽  
Huan He ◽  
...  

Author(s):  
Victor Spangenberg ◽  
Losev Michail ◽  
Volkhin Ilya ◽  
Svetlana Smirnova ◽  
Nikitin Pavel ◽  
...  

Pericentromeric regions of chromosomes enriched in tandemly repeated satellite DNA although representing a significant part of eukaryotic genomes are still understudied mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability and evolution. Thus, the idea of satellite DNA as a junk part of the genome was refuted. Integration of data about molecular composition, chromosome behaviour and details of in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions of pericentromeric regions non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between cerntomeric regions of X chromosome and autosomes, and associations between centromeric regions of autosomal bivalents forming chromocenters. We conclude that X chromosome form temporary synaptic associations with different autosomes in early meiotic prophase I which normally can be found at pachytene-diplotene without signs of pachytene arrest. These associations are formed between the satellite DNA-enriched centomeric regions of X chromosome and different autosomes but not involve the satellite-poor centromeric region of Y-chromosome. We suggest the mechanism of X chromosome competitive replacement from such associations during synaptic correction. We showed that centromeric region of the X chromosome remains free of γH2Ax-dependent chromatin inactivation, while Y chromosome is completely inactivated. This findings highlights the predominant role of associations between satellite DNA-enriched regions of different chromosomes including X. We assume that X-autosome temporary associations is a manifestation of an additional synaptic disorders checkpoint. These associations are normally corrected before the late diplotene. We revealed that the intense spreading conditions applied to the spermatocytes I nuclei did not lead to destruction of stretched chromatin fibers i.e. elongated chromocenters enriched in satellite DNA. Revealed by us tight associations between pericentromeric regions of different autosomal bivalents and X chromosome may represent the basis for repeat stability maintenance in autosomes an X chromosome. The consequences of our findings are discussed. We obtained the preparations of mouse spermatocytes nuclei in the meiotic prophase I using two approaches: standard and extremely intense surface spread techniques. Using immuno-FISH we visualized tandemly repeated mouse Major and Minor satellite DNA located in the pericentromeric regions of chromosomes and performed a morphological comparison of the standard- and intensely spreaded meiotic nuclei. Based on our results, we assume the remarkable strength of the chromocenter-mediated associations, “chromatin “bridges”, between different bivalents at the pachytene and diplotene stages. We have demonstrated that the chromocenter “bridges” between the centromeric ends of meiotic bivalents are enriched in both tandemly repeated Major and Minor satellite DNA. Association of centromeric regions of autosomal bivalents and X-chromosome but not with Y-chromosome correlates with the absence of Major and Minor satellites on Y-chromosome. We suggest that revealed tight associations between pericentromeric regions of bivalents may represent the network-like system providing dynamic stability of chromosomal territories, as well as add new data for the hypothesis of ectopic recombination in these regions which supports sequence homogeneity between non-homologous chromosomes and does not contradict the meiotic restrictions imposed by the crossing-over interference near centromeres. We conclude that nuclear architecture in meio-sis may play an essential role in contacts between the non-homologous chromosomes providing the specific characteristics of pericentromeric DNA.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009773
Author(s):  
Xueying Fan ◽  
Ioannis Moustakas ◽  
Vanessa Torrens-Juaneda ◽  
Qijing Lei ◽  
Geert Hamer ◽  
...  

During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tomoko Takagi ◽  
Masako Osumi ◽  
Akira Shinohara

AbstractActin polymerises to form filaments/cables for motility, transport, and the structural framework in a cell. Recent studies show that actin polymers are present not only in the cytoplasm but also in the nuclei of vertebrate cells. Here, we show, by electron microscopic observation with rapid freezing and high-pressure freezing, a unique bundled structure containing actin in the nuclei of budding yeast cells undergoing meiosis. The nuclear bundle during meiosis consists of multiple filaments with a rectangular lattice arrangement, often showing a feather-like appearance. The bundle was immunolabelled with an anti-actin antibody and was sensitive to an actin-depolymerising drug. Similar to cytoplasmic bundles, nuclear bundles are rarely seen in premeiotic cells and spores and are induced during meiotic prophase-I. The formation of the nuclear bundle is independent of DNA double-stranded breaks. We speculate that nuclear bundles containing actin play a role in nuclear events during meiotic prophase I.


Development ◽  
2021 ◽  
Author(s):  
Hui Tian ◽  
Petko M. Petkov

Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.


2021 ◽  
Vol 2 ◽  
Author(s):  
Paul Goldstein

Abstract The anthelmintic dinitroaniline oryzalin interferes with the formation of microtubules and inhibits meiosis and mitosis in nematodes. Exposure to oryzalin resulted in deterioration in morphology of the oocytes and loss of synaptonemal complexes at meiotic prophase I. The nuclear matrix and envelope were poorly formed, and the central rachis was diminished. These results provide the basis for the loss of fecundity after treatment with the oryzalin resulting in control of parasitic nematodes.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ronald J. Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Abstract Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


2020 ◽  
Author(s):  
Ronald Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


2020 ◽  
Author(s):  
Erik Toraason ◽  
Cordell Clark ◽  
Anna Horacek ◽  
Marissa L. Glover ◽  
Alina Salagean ◽  
...  

SummaryDuring meiosis, the maintenance of genome integrity is critical for generating viable haploid gametes [1]. In meiotic prophase I, double-strand DNA breaks (DSBs) are induced and a subset of these DSBs are repaired as interhomolog crossovers to ensure proper chromosome segregation. DSBs in excess of the permitted number of crossovers must be repaired by other pathways to ensure genome integrity [2]. To determine if the sister chromatid is engaged for meiotic DSB repair during oogenesis, we developed an assay to detect sister chromatid repair events at a defined DSB site during Caenorhabditis elegans meiosis. Using this assay, we directly demonstrate that the sister chromatid is available as a meiotic repair template for both crossover and noncrossover recombination, with noncrossovers being the predominant recombination outcome. We additionally find that the sister chromatid is the exclusive recombination partner for DSBs during late meiotic prophase I. Analysis of noncrossover conversion tract sequences reveals that DSBs are processed similarly throughout prophase I and recombination intermediates remain central around the DSB site. Further, we demonstrate that the SMC-5/6 complex is required for long conversion tracts in early prophase I and intersister crossovers during late meiotic prophase I; whereas, the XPF-1 nuclease is required only in late prophase to promote sister chromatid repair. In response to exogenous DNA damage at different stages of meiosis, we find that mutants for SMC-5/6 and XPF-1 have differential effects on progeny viability. Overall, we propose that SMC-5/6 both processes recombination intermediates and promotes sister chromatid repair within meiotic prophase I, while XPF-1 is required as an intersister resolvase only in late prophase I.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 386 ◽  
Author(s):  
Sergey Matveevsky ◽  
Oxana Kolomiets ◽  
Aleksey Bogdanov ◽  
Elena Alpeeva ◽  
Irina Bakloushinskaya

Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.


Sign in / Sign up

Export Citation Format

Share Document