Galanin in the bed nucleus of the stria terminalis and medial amygdala of the rat: lack of sexual dimorphism despite regulation of gene expression across puberty.

Endocrinology ◽  
1994 ◽  
Vol 134 (5) ◽  
pp. 1999-2004 ◽  
Author(s):  
B Planas ◽  
P E Kolb ◽  
M A Raskind ◽  
M A Miller
2017 ◽  
Vol 11 ◽  
Author(s):  
Yousuke Tsuneoka ◽  
Shinji Tsukahara ◽  
Sachine Yoshida ◽  
Kenkichi Takase ◽  
Satoko Oda ◽  
...  

2008 ◽  
Vol 32 (3) ◽  
pp. 283-298 ◽  
Author(s):  
Christopher M. Olsen ◽  
Yong Huang ◽  
Shirlean Goodwin ◽  
Daniel C. Ciobanu ◽  
Lu Lu ◽  
...  

To identify distinct transcriptional patterns between the major subcortical dopamine targets commonly studied in addiction we studied differences in gene expression between the bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAc), and dorsal striatum (dStr) using microarray analysis. We first tested for differences in expression of genes encoding transcripts for common neurotransmitter systems as well as calcium binding proteins routinely used in neuroanatomical delineation of brain regions. This a priori method revealed differential expression of corticotropin releasing hormone ( Crh), the GABA transporter ( Slc6a1), and prodynorphin ( Pdyn) mRNAs as well as several others. Using a gene ontology tool, functional scoring analysis, and Ingenuity Pathway Analysis, we further identified several physiological pathways that were distinct among these brain regions. These two different analyses both identified calcium signaling, G-coupled protein receptor signaling, and adenylate cyclase-related signaling as significantly different among the BNST, NAc, and dStr. These types of signaling pathways play important roles in, amongst other things, synaptic plasticity. Investigation of differential gene expression revealed several instances that may provide insight into reported differences in synaptic plasticity between these brain regions. The results support other studies suggesting that crucial pathways involved in neurotransmission are distinct among the BNST, NAc, and dStr and provide insight into the potential use of pharmacological agents that may target region-specific signaling pathways. Furthermore, these studies provide a framework for future mouse-mouse comparisons of transcriptional profiles after behavioral/pharmacological manipulation.


1999 ◽  
Vol 161 (3) ◽  
pp. 349-356 ◽  
Author(s):  
J Schulkin

Glucocorticoids regulate corticotropin-releasing hormone (CRH) gene expression in the placenta and the brain. In both the placenta and two extrahypothalamic sites in the brain (the amygdala and the bed nucleus of the stria terminalis), glucocorticoids elevate CRH gene expression. One functional role of the elevation of CRH by glucocorticoids may be to signal adversity. When CRH is over-expressed in the placenta, it may indicate that the pregnancy is in danger, and preterm labor may result. When CRH is over-expressed in the brains of animals, they may become more fearful. Both situations possibly reflect allostatic mechanisms and vulnerability to allostatic overload, a condition in which biological tissue may be compromised.


Sign in / Sign up

Export Citation Format

Share Document