scholarly journals TBS (Trabecular Bone Score) and Diabetes-Related Fracture Risk

2013 ◽  
Vol 98 (2) ◽  
pp. 602-609 ◽  
Author(s):  
William D. Leslie ◽  
Berengère Aubry-Rozier ◽  
Olivier Lamy ◽  
Didier Hans ◽  

Abstract Context: Type 2 diabetes is associated with increased fracture risk but paradoxically greater bone mineral density (BMD). Trabecular bone score (TBS) is derived from the texture of the spine dual x-ray absorptiometry (DXA) image and is related to bone microarchitecture and fracture risk, providing information independent of BMD. Objective: This study evaluated the ability of lumbar spine TBS to account for increased fracture risk in diabetes. Design and Setting: We performed a retrospective cohort study using BMD results from a large clinical registry for the province of Manitoba, Canada. Patients: We included 29,407 women 50 years old and older with baseline DXA examinations, among whom 2356 had diagnosed diabetes. Main Outcome Measures: Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Health service records were assessed for incident nontraumatic major osteoporotic fractures (mean follow-up 4.7 years). Results: Diabetes was associated with higher BMD at all sites but lower lumbar spine TBS in unadjusted and adjusted models (all P < .001). The adjusted odds ratio (aOR) for a measurement in the lowest vs the highest tertile was less than 1 for BMD (all P < .001) but was increased for lumbar spine TBS [aOR 2.61, 95% confidence interval (CI) 2.30–2.97]. Major osteoporotic fractures were identified in 175 women (7.4%) with and 1493 (5.5%) without diabetes (P < .001). Lumbar spine TBS was a BMD-independent predictor of fracture and predicted fractures in those with diabetes (adjusted hazard ratio 1.27, 95% CI 1.10–1.46) and without diabetes (hazard ratio 1.31, 95% CI 1.24–1.38). The effect of diabetes on fracture was reduced when lumbar spine TBS was added to a prediction model but was paradoxically increased from adding BMD measurements. Conclusions: Lumbar spine TBS predicts osteoporotic fractures in those with diabetes, and captures a larger portion of the diabetes-associated fracture risk than BMD.

2021 ◽  
Vol 11 ◽  
Author(s):  
Barbara Stachowska ◽  
Jowita Halupczok-Żyła ◽  
Justyna Kuliczkowska-Płaksej ◽  
Joanna Syrycka ◽  
Marek Bolanowski

IntroductionThe impairment in bone microarchitecture and reduced bone quality are relevant mechanisms underlying the increased fracture risk in Cushing’s syndrome (CS). The trabecular bone score (TBS) is a relatively novel textural index of bone microarchitecture.PurposeThe objective of the study was to compare TBS, bone mineral density (BMD), and fracture risk in patients with endogenous CS to controls. We have investigated the association of TBS with anthropometric parameters and 25(OH) vitamin D concentrations.Materials and MethodsThe study group comprised 19 consecutive patients with CS (14 women and 5 men; mean age 45.84 ± 13.15 years) and sex-, age-matched 36 controls (25 women and men; mean age 52.47 ± 8.98 years). Anthropometric parameters, biochemical and hormonal data were compared between groups. Lumbar spine (L1–L4) and femoral neck BMD (LS BMD, FN BMD) measurements were performed. TBS values were obtained from lumbar spine DXA images.ResultsTBS was significantly lower in patients with CS compared to controls (p = 0.0002). The 10-year probability of hip fracture and the 10-year probability of a major osteoporotic fracture were significantly higher in the CS group than in controls (p = 0.03, p < 0.0001, respectively). All subjects from the CS group with fractures had low TBS value (degraded microarchitecture). TBS correlated negatively with the duration of disease in patients with CS (r = -0.590 p = 0.008).ConclusionsThe patients with active CS have altered bone microstructure as indicated by the decreased TBS and are at higher risk of hip and a major osteoporotic fractures. TBS seems to be a very important analytical tool facilitating fracture risk assessment in endogenous hypercortisolism.


2020 ◽  
Author(s):  
Youn Jeong Kim ◽  
Kwi Young Kang ◽  
Juyoung Shin ◽  
Yoonhee Jun ◽  
Sang Il Kim ◽  
...  

Abstract Background Screening for osteoporosis with dual-energy X-ray absorptiometry (DXA) is recommended for male HIV-infected patients only above the age of 50. Recently, trabecular bone score (TBS) has been introduced as a novel tool to assess bone microarchitecture using DXA of the lumbar spine. Few studies have reported TBS values in HIV-infected individuals younger than 50 years of age. This study compared TBS values in young males infected with HIV and matched controls, and investigated the associations between TBS and demographic parameters, clinical parameters, and bone mineral density (BMD) scores. Methods A cross-sectional study of BMD and TBS in HIV-infected men (n = 80) aged between 18 and 50 years and age- and sex-matched controls (n = 80) was conducted. Results The proportion of patients with low BMD (Z-score ≤−2) was significantly greater among HIV-infected patients than among matched controls (21.3% [17/80] vs. 8.8% [7/80], p = 0.027). Mean TBS values were significantly lower in HIV-infected patients than in controls (1.41 ± 0.07 vs. 1.45 ± 0.07, p = 0.008). In both groups, TBS values were positively correlated with BMD at the lumbar spine, femoral neck, and total hip (p < 0.001); however, TBS was not correlated with body mass index. In the HIV group, TBS was negatively correlated with the duration of tenofovir disoproxil fumarate(TDF) exposure (p = 0.04). Conclusion Young men infected with HIV had abnormal bone trabecular microarchitecture, as assessed by both TBS and BMD. TBS values were correlated with both BMD and the duration of TDF exposure.


2022 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Alicia R. Jones ◽  
Koen Simons ◽  
Susan Harvey ◽  
Vivian Grill

Individuals with primary hyperparathyroidism (PHPT) have reduced bone mineral density (BMD) according to dual X-ray absorptiometry at cortical sites, with relative sparing of trabecular BMD. However, fracture risk is increased at all sites. Trabecular bone score (TBS) may more accurately describe their bone quality and fracture risk. This study compared how BMD and TBS describe bone quality in PHPT. We conducted a retrospective cross-sectional study with a longitudinal component, of adults with PHPT, admitted to a tertiary hospital in Australia over ten years. The primary outcome was the TBS at the lumbar spine, compared to BMD, to describe bone quality and predict fractures. Secondary outcomes compared changes in TBS after parathyroidectomy. Of 68 included individuals, the mean age was 65.3 years, and 79% were female. Mean ± SD T-scores were −1.51 ± 1.63 at lumbar spine and mean TBS was 1.19 ± 0.12. Only 20.6% of individuals had lumbar spine BMD indicative of osteoporosis, while 57.4% of TBS were ≤1.20, indicating degraded architecture. There was a trend towards improved fracture prediction using TBS compared to BMD which did not reach statistical significance. Comparison of 15 individuals following parathyroidectomy showed no improvement in TBS.


2021 ◽  
Vol 53 (08) ◽  
pp. 499-503
Author(s):  
Anna Nowakowska-Płaza ◽  
Jakub Wroński ◽  
Iwona Sudoł-Szopińska ◽  
Piotr Głuszko

AbstractChronic glucocorticoid therapy is associated with osteoporosis and can cause fractures in up to 50% of patients. Increased risk of fractures in patients with glucocorticoid-induced osteoporosis does not result only from the decreased bone mineral density (BMD) but also bone microarchitecture deterioration. Trabecular bone score (TBS) is a method complementary to DXA, providing additional information about trabecular bone structure. The aim of this study was to assess the clinical utility of TBS in fracture risk assessment of patients treated with glucocorticoids. Patients with rheumatic diseases treated with glucocorticoids for at least 3 months were enrolled. All recruited patients underwent DXA with additional TBS assessment. We analyzed the frequency of osteoporosis and osteoporotic fractures and assessed factors that might be associated with the risk of osteoporotic fractures. A total of 64 patients were enrolled. TBS and TBS T-score values were significantly lower in patients with osteoporosis compared to patients without osteoporosis. Low energy fractures occurred in 19 patients. The disturbed bone microarchitecture was found in 30% of patients with fractures without osteoporosis diagnosis based on BMD. In the multivariate analysis, only TBS and age were significantly associated with the occurrence of osteoporotic fractures. TBS reflects the influence of glucocorticoid therapy on bone quality better than DXA measured BMD and provides an added value to DXA in identifying the group of patients particularly prone to fractures.


2019 ◽  
Author(s):  
Youn Jeong Kim ◽  
Kwi Young Kang ◽  
Yoonhee Jun ◽  
Sang Il Kim ◽  
Kim Yang Ree

Abstract Background Screening for osteoporosis with dual-energy X-ray absorptiometry (DXA) is recommended for male HIV-infected patients only above the age of 50. Recently, trabecular bone score (TBS) has been introduced as a novel tool to assess bone microarchitecture using DXA of the lumbar spine. Few studies have reported TBS values in HIV-infected individuals younger than 50 years of age. This study compared TBS values in young males infected with HIV and matched controls, and investigated the associations between TBS and demographic parameters, clinical parameters, and bone mineral density (BMD) scores. Methods A cross-sectional study of BMD and TBS in HIV-infected men (n = 80) aged between 18 and 50 years and age- and sex-matched controls (n = 80) was conducted. Results The proportion of patients with low BMD (Z-score ≤−2) was significantly greater among HIV-infected patients than among matched controls (21.3% [17/80] vs. 8.8% [7/80], p = 0.027). Mean TBS values were significantly lower in HIV-infected patients than in controls (1.41 ± 0.07 vs. 1.45 ± 0.07, p = 0.008). In both groups, TBS values were positively correlated with BMD at the lumbar spine, femoral neck, and total hip (p < 0.001); however, TBS was not correlated with body mass index. In the HIV group, TBS was negatively correlated with the duration of tenofovir disoproxil fumarate(TDF) exposure (p = 0.04). Conclusion Young men infected with HIV had abnormal bone trabecular microarchitecture, as assessed by both TBS and BMD. TBS values were correlated with both BMD and the duration of TDF exposure.


2020 ◽  
Author(s):  
Youn Jeong Kim ◽  
Kwi Young Kang ◽  
Juyoung Shin ◽  
Yoonhee Jun ◽  
Sang Il Kim ◽  
...  

Abstract Background Screening for osteoporosis with dual-energy X-ray absorptiometry (DXA) is recommended for male HIV-infected patients only above the age of 50. Recently, trabecular bone score (TBS) has been introduced as a novel tool to assess bone microarchitecture using DXA of the lumbar spine. Few studies have reported TBS values in HIV-infected individuals younger than 50 years of age. This study compared TBS values in young males infected with HIV and matched controls, and investigated the associations between TBS and demographic parameters, clinical parameters, and bone mineral density (BMD) scores. Methods A cross-sectional study of BMD and TBS in HIV-infected men (n = 80) aged between 18 and 50 years and age- and sex-matched controls (n = 80) was conducted. Results The proportion of patients with low BMD (Z-score ≤−2) was significantly greater among HIV-infected patients than among matched controls (21.3% [17/80] vs. 8.8% [7/80], p = 0.027). Mean TBS values were significantly lower in HIV-infected patients than in controls (1.41 ± 0.07 vs. 1.45 ± 0.07, p = 0.008). In both groups, TBS values were positively correlated with BMD at the lumbar spine, femoral neck, and total hip (p < 0.001); however, TBS was not correlated with body mass index. In the HIV group, TBS was negatively correlated with the duration of tenofovir disoproxil fumarate(TDF) exposure (p = 0.04). Conclusion Young men infected with HIV had abnormal bone trabecular microarchitecture, as assessed by both TBS and BMD. TBS values were correlated with both BMD and the duration of TDF exposure.


2020 ◽  
Author(s):  
Youn Jeong Kim ◽  
Kwi Young Kang ◽  
Juyoung Shin ◽  
Yoonhee Jun ◽  
Sang Il Kim ◽  
...  

Abstract Background: Screening for osteoporosis with dual-energy X-ray absorptiometry (DXA) is recommended for male HIV-infected patients only above the age of 50. Recently, trabecular bone score (TBS) has been introduced as a novel tool to assess bone microarchitecture using DXA of the lumbar spine. Few studies have reported TBS values in HIV-infected individuals younger than 50 years of age. This study compared TBS values in young males infected with HIV and matched controls, and investigated the associations between TBS and demographic parameters, clinical parameters, and bone mineral density (BMD) scores. Methods: A cross-sectional study of BMD and TBS in HIV-infected men (n = 80) aged between 18 and 50 years and age- and sex-matched controls (n = 80) was conducted.Results: The proportion of patients with low BMD (Z-score ≤−2) was significantly greater among HIV-infected patients than among matched controls (21.3% [17/80] vs. 8.8% [7/80], p = 0.027). Mean TBS values were significantly lower in HIV-infected patients than in controls (1.41 ± 0.07 vs. 1.45 ± 0.07, p = 0.008). In both groups, TBS values were positively correlated with BMD at the lumbar spine, femoral neck, and total hip (p < 0.001); however, TBS was not correlated with body mass index. In the HIV group, TBS was negatively correlated with the duration of tenofovir disoproxil fumarate(TDF) exposure (p = 0.04). Conclusion: Young men infected with HIV had abnormal bone trabecular microarchitecture, as assessed by both TBS and BMD. TBS values were correlated with both BMD and the duration of TDF exposure.


2017 ◽  
Vol 20 (1) ◽  
pp. 22-27
Author(s):  
Tatiana A. Grebennikova ◽  
Zhanna E. Belaya

Type 2 diabetes mellitus (T2DM) is associated with higher fracture risk but, better bone mineral density (BMD). Alteration of the skeletal material or microstructure may be an underlying mechanism for the discrepancy between BMD and fracture risk in diabetes. The trabecular bone score has been proposed as an indirect measurement of bone microarchitecture with the routine dual energy absorptiometry.  We present a clinical case of diagnosis and treatment of osteoporosis associated with T2DM in patient with a low-trauma fracture and concomitant endocrine disorder.


2020 ◽  
Author(s):  
Youn Jeong Kim ◽  
Kwi Young Kang ◽  
Juyoung Shin ◽  
Yoonhee Jun ◽  
Sang Il Kim ◽  
...  

Abstract Background Screening for osteoporosis with dual-energy X-ray absorptiometry (DXA) is recommended for male HIV-infected patients only above the age of 50. Recently, trabecular bone score (TBS) has been introduced as a novel tool to assess bone microarchitecture using DXA of the lumbar spine. Few studies have reported TBS values in HIV-infected individuals younger than 50 years of age. This study compared TBS values in young males infected with HIV and matched controls, and investigated the associations between TBS and demographic parameters, clinical parameters, and bone mineral density (BMD) scores. Methods A cross-sectional study of BMD and TBS in HIV-infected men (n = 80) aged between 18 and 50 years and age- and sex-matched controls (n = 80) was conducted. Results The proportion of patients with low BMD (Z-score ≤−2) was significantly greater among HIV-infected patients than among matched controls (21.3% [17/80] vs. 8.8% [7/80], p = 0.027). Mean TBS values were significantly lower in HIV-infected patients than in controls (1.41 ± 0.07 vs. 1.45 ± 0.07, p = 0.008). In both groups, TBS values were positively correlated with BMD at the lumbar spine, femoral neck, and total hip (p < 0.001); however, TBS was not correlated with body mass index. In the HIV group, TBS was negatively correlated with the duration of tenofovir disoproxil fumarate(TDF) exposure (p = 0.04). Conclusion Young men infected with HIV had abnormal bone trabecular microarchitecture, as assessed by both TBS and BMD. TBS values were correlated with both BMD and the duration of TDF exposure.


2019 ◽  
Vol 51 (03) ◽  
pp. 186-190 ◽  
Author(s):  
Gonzalo Miguel ◽  
Federico Carranza ◽  
Juan Rodríguez ◽  
Mercedes Ramos ◽  
David Pablos ◽  
...  

AbstractFollowing a parathyroidectomy there is a bone mineral density (BMD) improvement in patients with primary hyperparathyroidism. However, data of bone microarchitecture are scarce. Trabecular bone score (TBS) estimates bone microarchitecture and could provide valuable information in those patients. The aim of this study is to assess TBS changes 2 years after successful surgery in a group of patients with primary hyperparathyroidism and correlate these results with changes in BMD and bone turnover markers. This is a prospective study including 32 patients. In all participants BMD and TBS were measured, before and 24 months after surgery. Biochemical data: serum calcium, PTH, 25-OH-vitamin D, beta-crosslaps, bone alkaline phosphatase, and osteocalcin. 25 female and 7 male patients, mean age 64.6±12.4 years, were included in the study. At baseline, BMD was low at: lumbar spine (T-score −2.19±1.31), total hip (−1.33±1.12), femoral neck (−1.75±0.84), and distal one-third radius (−2.74±1.68). Baseline TBS showed partially degraded microarchitecture (1.180±0.130). After parathyroidectomy lumbar spine BMD increased significantly (5.3±13.0%, p<0.05), as well as total hip (3.8±8.8%, p<0.05). There was an increase in TBS, but this was not significant. There was a correlation between TBS and BAP at baseline (rs=0.73; p<0.01) and TBS and BAP 2 years after surgery (rs=0.57, p<0.05). Although bone density improves 2 years after surgery in patients with primary hyperparathyroidism and there is a restoration of bone turnover markers, TBS is not completely restored. These results remark the necessity of longer periods of study, to confirm if bone microarchitecture could be completely restored after surgery.


Sign in / Sign up

Export Citation Format

Share Document