Branched Chain Amino Acids Activate Messenger Ribonucleic Acid Translation Regulatory Proteins in Human Skeletal Muscle, and Glucocorticoids Blunt This Action

2001 ◽  
Vol 86 (5) ◽  
pp. 2136-2143 ◽  
Author(s):  
Z. Liu
1992 ◽  
Vol 70 (1) ◽  
pp. 132-141 ◽  
Author(s):  
T. E. Graham ◽  
D. A. MacLean

This review focuses on the ammonia and amino acid metabolic responses of active human skeletal muscle, with a particular emphasis on steady-state exercise. Ammonia production in skeletal muscle involves the purine nucleotide cycle and the amino acids glutamate, glutamine, and alanine and probably also includes the branched chain amino acids as well as aspartate. Ammonia production is greatest during prolonged, steady state exercise that requires 60–80% [Formula: see text] and is associated with glutamine and alanine metabolism. Under these circumstances it is unresolved whether the purine nucleotide cycle (AMP deamination) is active; if so, it must be cycling with no IMP accumulation. It is proposed that under these circumstances the ammonia is produced from slow twitch fibers by the deamination of the branched chain amino acids. The ammonia response can be suppressed by increasing the carbohydrate availability and this may be mediated by altering the availability of the branched chain amino acids. The fate of the ammonia released into the circulation is unresolved, but there is indirect evidence that a considerable portion may be excreted by the lung in expired air.Key words: glutamine, branched chain amino acids, glutamate dehydrogenase, purine nucleotide cycle.


2001 ◽  
Vol 86 (5) ◽  
pp. 2136-2143 ◽  
Author(s):  
Zhenqi Liu ◽  
Linda A. Jahn ◽  
Wen Long ◽  
David A. Fryburg ◽  
Liping Wei ◽  
...  

Branched chain amino acids (BCAA) are particularly effective anabolic agents. Recent in vitro studies suggest that amino acids, particularly leucine, activate a signaling pathway that enhances messenger ribonucleic acid translation and protein synthesis. The physiological relevance of these findings to normal human physiology is uncertain. We examined the effects of BCAA on the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (eIF4E-BP1) and ribosomal protein S6 kinase (p70S6K) in skeletal muscle of seven healthy volunteers. We simultaneously examined whether BCAA affect urinary nitrogen excretion and forearm skeletal muscle protein turnover and whether the catabolic action of glucocorticoids could be mediated in part by inhibition of the action of BCAA on the protein synthetic apparatus. BCAA infusion decreased urinary nitrogen excretion (P < 0.02), whole body phenylalanine flux (P < 0.02), plasma phenylalanine concentration (P < 0.001), and improved forearm phenylalanine balance (P = 0.03). BCAA also increased the phosphorylation of both eIF4E-BP1 (P < 0.02) and p70S6K (P < 0.03), consistent with an action to activate the protein synthetic apparatus. Dexamethasone increased plasma phenylalanine concentration (P < 0.001), prevented the BCAA-induced anabolic shift in forearm protein balance, and inhibited their action on the phosphorylation of p70S6K. We conclude that in human skeletal muscle BCAA act directly as nutrient signals to activate messenger ribonucleic acid translation and potentiate protein synthesis. Glucocorticoids interfere with this action, and that may be part of the mechanism by which they promote net protein catabolism in muscle.


1986 ◽  
Vol 250 (4) ◽  
pp. E407-E413 ◽  
Author(s):  
R. A. Gelfand ◽  
M. G. Glickman ◽  
R. Jacob ◽  
R. S. Sherwin ◽  
R. A. DeFronzo

To compare the contributions of splanchnic and skeletal muscle tissues to the disposal of intravenously administered amino acids, regional amino acid exchange was measured across the splanchnic bed and leg in 11 normal volunteers. Postabsorptively, net release of amino acids by leg (largely alanine and glutamine) was complemented by the net splanchnic uptake of amino acids. Amino acid infusion via peripheral vein (0.2 g X kg-1 X h-1) caused a doubling of plasma insulin and glucagon levels and a threefold rise in blood amino acid concentrations. Both splanchnic and leg tissues showed significant uptake of infused amino acids. Splanchnic tissues accounted for approximately 70% of the total body amino acid nitrogen disposal; splanchnic uptake was greatest for the glucogenic amino acids but also included significant quantities of branched-chain amino acids. In contrast, leg amino acid uptake was dominated by the branched-chain amino acids. Based on the measured leg balance, body skeletal muscle was estimated to remove approximately 25-30% of the total infused amino acid load and approximately 65-70% of the infused branched-chain amino acids. Amino acid infusion significantly stimulated both the leg efflux and the splanchnic uptake of glutamine (not contained in the infusate). We conclude that when amino acids are infused peripherally in normal humans, splanchnic viscera (liver and gut) are the major sites of amino acid disposal.


1983 ◽  
Vol 244 (2) ◽  
pp. E151-E158 ◽  
Author(s):  
J. T. Brosnan ◽  
K. C. Man ◽  
D. E. Hall ◽  
S. A. Colbourne ◽  
M. E. Brosnan

Amino acid concentrations in whole blood, liver, kidney, skeletal muscle, and brain were measured and arteriovenous differences calculated for head, hindlimb, kidney, gut, and liver in control and streptozotocin-diabetic rats. In the control rats, glutamine was released by muscle and utilized by intestine, intestine released citrulline and alanine, liver removed alanine, and the kidneys removed glycine and produced serine. In diabetic rats, the major changes from the pattern of fluxes seen in the normal rat were the release of many amino acids from muscle, with glutamine and alanine predominating, and the uptake of these amino acids by the liver. Glutamine removal by the intestine was suppressed in diabetes, but a large renal uptake of glutamine was evident. Branched-chain amino acids were removed by the diabetic brain, and consequently, brain levels of a number of large neutral amino acids were decreased in diabetes.


2000 ◽  
Vol 118 (4) ◽  
pp. A774
Author(s):  
Honma Nobuko ◽  
Imagawa Yuriko ◽  
Kobayashi Tetsuo ◽  
Kadowaki Motoni ◽  
Takahashi Kazuyoshi

Sign in / Sign up

Export Citation Format

Share Document