scholarly journals Effect of Thyroid Dysfunction on High-Density Lipoprotein Subfraction Metabolism: Roles of Hepatic Lipase and Cholesteryl Ester Transfer Protein1

1998 ◽  
Vol 83 (8) ◽  
pp. 2921-2924 ◽  
Author(s):  
K. C. B. Tan ◽  
S. W. M. Shiu ◽  
A. W. C. Kung.

abstract To investigate the effect of thyroid dysfunction on high-density lipoprotein (HDL) metabolism, we measured HDL subfractions, apolipoprotein A-I containing particles (LpA-I and LpA-I:A-II), and the activities of enzymes involved in the remodeling and metabolism of HDL[ namely hepatic lipase (HL), lipoprotein lipase, and cholesteryl ester transfer protein (CETP)] in 18 hyperthyroid and 17 hypothyroid patients before and after treatment. HDL was subfractionated by density gradient ultracentrifugation, and LpA-I was analyzed by electroimmunodiffusion. The major changes were found in the HDL2 subfraction and in LpA-I particles. HDL2-C and LpA-I were reduced in hyperthyroidism (P < 0.01, P < 0.05, respectively) and increased in hypothyroidism (both P < 0.05) compared with their respective euthyroid matched controls. Changes in HDL2-cholesterol were reversed after treatment in both hyper- and hypothyroid patients, and LpA-I also decreased in the hypothyroid patients after treatment. HL (P < 0.05) and CETP activities (P < 0.05) were elevated in hyperthyroidism and reduced in hypothyroidism (P < 0.05, P < 0.01 respectively) and both were related to free T4 levels. The changes in HDL2-C and LpA-I correlated significantly with changes in HL after treatment but not with CETP or lipoprotein lipase. In summary, HDL metabolism was altered in thyroid dysfunction, and the effect of thyroid hormone on HDL was mediated mainly via its effect on HL activity.

1981 ◽  
Vol 61 (2) ◽  
pp. 235-240 ◽  
Author(s):  
T. R. Gamlen ◽  
E. Layward ◽  
F. McTaggart ◽  
D. P. R. Muller

1. Significant positive correlations were found between the lipoprotein lipase and hepatic lipase activities of post-heparin plasma samples and plasma high-density-lipoprotein (HDL) cholesterol concentrations in 21 children with hyperlipidaemia and six normal adult males. 2. A significant positive correlation was also observed between the two lipase activities and the ratio of HDL cholesterol to apoprotein AI (apo AI) concentrations. 3. These findings provide further evidence that a significant proportion of HDL and possibly the HDL2 subfraction is formed during the clearance of triglyceride-rich lipoproteins.


1994 ◽  
Vol 40 (12) ◽  
pp. 2313-2316 ◽  
Author(s):  
D S Sheriff ◽  
M el Fakhri ◽  
K Ghwarsha

Abstract Genetic deficiencies of cholesteryl ester transport protein (CETP) and hepatic lipase activities have been associated with hyperalpha-lipoproteinemias. Here we present a family of 11 members, of which 9, including the father, mother, 5 sons, and 2 daughters, show a marked increase in high-density lipoprotein (HDL) cholesterol alone with low plasma concentrations of triglycerides. Analyses of lecithin:cholesterol acyltransferase (LCAT) activity, cholesteryl ester transfer between HDL fractions, hepatic lipase (HL) activity, and lipoprotein lipase (LPL) activity in these cases showed that a decrease in the heparin-releasable HL activity was the possible cause of the marked increase of HDL2 fractions observed in nine of them. Such a defect in HL activity could significantly affect HDL metabolism in particular and lipoprotein metabolism in general. Evidently, a marked increase in serum total cholesterol due to abnormal metabolism of HDL cholesterol, separate from known causes of altered low-density lipoprotein cholesterol metabolism, e.g., a clearance or a receptor defect, is not uncommon. The coordinated action of HL, LCAT, LPL, and CETP may be essential for normal metabolism of plasma lipoproteins.


2011 ◽  
Vol 122 (8) ◽  
pp. 385-400 ◽  
Author(s):  
Carine Steiner ◽  
Adriaan G. Holleboom ◽  
Ratna Karuna ◽  
Mohammad M. Motazacker ◽  
Jan Albert Kuivenhoven ◽  
...  

BA (bile acid) formation is considered an important final step in RCT (reverse cholesterol transport). HDL (high-density lipoprotein) has been reported to transport BAs. We therefore investigated the effects of monogenic disturbances in human HDL metabolism on serum concentrations and lipoprotein distributions of the major 15 BA species and their precursor C4 (7α-hydroxy-4-cholesten-3-one). In normolipidaemic plasma, approximately 84%, 11% and 5% of BAs were recovered in the LPDS (lipoprotein-depleted serum), HDL and the combined LDL (low-density lipoprotein)/VLDL (very-low-density lipoproteins) fraction respectively. Conjugated BAs were slightly over-represented in HDL. For C4, the respective percentages were 23%, 21% and 56% (41% in LDL and 15% in VLDL) respectively. Compared with unaffected family members, neither HDL-C (HDL-cholesterol)-decreasing mutations in the genes APOA1 [encoding ApoA-I (apolipoprotein A-I], ABCA1 (ATP-binding cassette transporter A1) or LCAT (lecithin:cholesterol acyltransferase) nor HDL-C-increasing mutations in the genes CETP (cholesteryl ester transfer protein) or LIPC (hepatic lipase) were associated with significantly different serum concentrations of BA and C4. Plasma concentrations of conjugated and secondary BAs differed between heterozygous carriers of SCARB1 (scavenger receptor class B1) mutations and unaffected individuals (P<0.05), but this difference was not significant after correction for multiple testing. Moreover, no differences in the lipoprotein distribution of BAs in the LPDS and HDL fractions from SCARB1 heterozygotes were observed. In conclusion, despite significant recoveries of BAs and C4 in HDL and despite the metabolic relationships between RCT and BA formation, monogenic disorders of HDL metabolism do not lead to altered serum concentrations of BAs and C4.


2016 ◽  
Vol 253 ◽  
pp. 7-14 ◽  
Author(s):  
Mariko Tani ◽  
Katalin V. Horvath ◽  
Benoit Lamarche ◽  
Patrick Couture ◽  
John R. Burnett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document