NEUROFERRITINOPATHY IN A JAPANESE FAMILY WITH A DUPLICATION IN THE FERRITIN LIGHT CHAIN GENE

Neurology ◽  
2008 ◽  
Vol 70 (Issue 16, Part 2) ◽  
pp. 1493-1494 ◽  
Author(s):  
E. Ohta ◽  
T. Nagasaka ◽  
K. Shindo ◽  
S. Toma ◽  
K. Nagasaka ◽  
...  
2008 ◽  
Vol 24 (3) ◽  
pp. 441-445 ◽  
Author(s):  
Akatsuki Kubota ◽  
Ayumi Hida ◽  
Yaeko Ichikawa ◽  
Yoshio Momose ◽  
Jun Goto ◽  
...  

1988 ◽  
Vol 263 (25) ◽  
pp. 12669-12676 ◽  
Author(s):  
P J Barton ◽  
B Robert ◽  
A Cohen ◽  
I Garner ◽  
D Sassoon ◽  
...  

1991 ◽  
Vol 27 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Toshiyasu Hirama ◽  
Sunao Takeshita ◽  
Yataroh Yoshida ◽  
Hideo Yamagishi

1985 ◽  
Vol 5 (11) ◽  
pp. 3168-3182
Author(s):  
E E Strehler ◽  
M Periasamy ◽  
M A Strehler-Page ◽  
B Nadal-Ginard

DNA fragments located 10 kilobases apart in the genome and containing, respectively, the first myosin light chain 1 (MLC1f) and the first myosin light chain 3 (MLC3f) specific exon of the rat myosin light chain 1 and 3 gene, together with several hundred base pairs of upstream flanking sequences, have been shown in runoff in vitro transcription assays to direct initiation of transcription at the cap sites of MLC1f and MLC3f mRNAs used in vivo. These results establish the presence of two separate, functional promoters within that gene. A comparison of the nucleotide sequence of the rat MLC1f/3f gene with the corresponding sequences from mouse and chicken shows that: the MLC1f promoter regions have been highly conserved up to position -150 from the cap site while the MLC3f promoter regions display a very poor degree of homology and even the absence or poor conservation of typical eucaryotic promoter elements such as TATA and CAT boxes; the exon/intron structure of this gene has been completely conserved in the three species; and corresponding exons, except for the regions encoding most of the 5' and 3' untranslated sequences, show greater than 75% homology while corresponding introns are similar in size but considerably divergent in sequence. The above findings indicate that the overall structure of the MLC1f/3f genes has been maintained between avian and mammalian species and that these genes contain two functional and widely spaced promoters. The fact that the structures of the alkali light chain gene from Drosophila melanogaster and of other related genes of the troponin C supergene family resemble a MLC3f gene without an upstream promoter and first exon strongly suggests that the present-day MLC1f/3f genes of higher vertebrates arose from a primordial alkali light chain gene through the addition of a far-upstream MLC1f-specific promoter and first exon. The two promoters have evolved at different rates, with the MLC1f promoter being more conserved than the MLC3f promoter. This discrepant evolutionary rate might reflect different mechanisms of promoter activation for the transcription of MLC1f and MLC3f RNA.


1989 ◽  
Vol 9 (11) ◽  
pp. 4970-4976
Author(s):  
J Y Zhang ◽  
W Bargmann ◽  
H R Bose

Avian lymphoid cells transformed by reticuloendotheliosis virus (REV-T) serve as a model to analyze the mechanism by which B-cell differentiation and antibody diversification occur in birds. Immunoglobulin light-chain gene rearrangements, diversification, and expression were analyzed in 72 independently derived REV-T-transformed cell lines. Lymphoid cells transformed as the result of expression of the v-rel oncogene were divided into two distinct groups based on light-chain gene rearrangements. The status of the light-chain gene loci in these REV-T-transformed cell lines was determined in part by the ages of the chickens whose spleen cells were transformed. In embryonic spleen cell lines transformed by the v-rel oncogene, rearrangements were not detected, even after prolonged culture in vitro, indicating that these cells are arrested in B-cell differentiation. REV-T transformants derived from spleens obtained from chickens 2 weeks old or older, however, had at least one light-chain allele rearranged. All of the cell lines analyzed which exhibited rearranged light-chain genes contained light-chain transcripts, and most of the REV-T-transformed cells which displayed light-chain rearrangements expressed immunoglobulin protein. REV-T, therefore, transforms B-lymphoid cells at phenotypically different stages of development. Many REV-T-transformed cells undergo immunoglobulin chain gene rearrangements during prolonged propagation in vitro. Most of the cell lines which rearrange their light-chain alleles also undergo diversification during cultivation in vitro. Light-chain diversification occurs during or after the rearrangement event.


Science ◽  
1983 ◽  
Vol 221 (4612) ◽  
pp. 750-754 ◽  
Author(s):  
M Malissen ◽  
T Hunkapiller ◽  
L Hood

Sign in / Sign up

Export Citation Format

Share Document