E4 allele dosage does not predict cholinergic activity or synapse loss in Alzheimer's disease

Neurology ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 403-403 ◽  
Author(s):  
J. Corey-Bloom ◽  
P. Tiraboschi ◽  
L. A. Hansen ◽  
M. Alford ◽  
B. Schoos ◽  
...  
1997 ◽  
pp. 55-60
Author(s):  
Judes Poirier ◽  
Isabelle Aubert ◽  
Rémi Quirion ◽  
Serge Gauthier ◽  
Martin Farlow ◽  
...  

Author(s):  
V. Escott-Price ◽  
A. Myers ◽  
M. Huentelman ◽  
M. Shoai ◽  
J. Hardy

The We and others have previously shown that polygenic risk score analysis (PRS) has considerable predictive utility for identifying those at high risk of developing Alzheimer’s disease (AD) with an area under the curve (AUC) of >0.8. However, by far the greatest determinant of this risk is the apolipoprotein E locus with the E4 allele alone giving an AUC of ~0.68 and the inclusion of the protective E2 allele increasing this to ~0.69 in a clinical cohort. An important question is to determine how good PRS is at predicting risk in those who do not carry the E4 allele (E3 homozygotes, E3E2 and E2E2) and in those who carry neither the E4 or E2 allele (i.e. E3 homozygotes). Previous studies have shown that PRS remains a significant predictor of AD risk in clinical cohorts after controlling for APOE ε4 carrier status. In this study we assess the accuracy of PRS prediction in a cohort of pathologically confirmed AD cases and controls. The exclusion of APOE4 carriers has surprisingly little effect on the PRS prediction accuracy (AUC ~0.83 [95% CI: 0.80-0.86]), and the accuracy remained higher than that in clinical cohorts with APOE included as a predictor. From a practical perspective this suggests that PRS analysis will have predictive utility even in E4 negative individuals and may be useful in clinical trial design.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Zhao ◽  
Yuan Fu ◽  
Yu Yamazaki ◽  
Yingxue Ren ◽  
Mary D. Davis ◽  
...  

Abstract APOE4 is the strongest genetic risk factor associated with late-onset Alzheimer’s disease (AD). To address the underlying mechanism, we develop cerebral organoid models using induced pluripotent stem cells (iPSCs) with APOE ε3/ε3 or ε4/ε4 genotype from individuals with either normal cognition or AD dementia. Cerebral organoids from AD patients carrying APOE ε4/ε4 show greater apoptosis and decreased synaptic integrity. While AD patient-derived cerebral organoids have increased levels of Aβ and phosphorylated tau compared to healthy subject-derived cerebral organoids, APOE4 exacerbates tau pathology in both healthy subject-derived and AD patient-derived organoids. Transcriptomics analysis by RNA-sequencing reveals that cerebral organoids from AD patients are associated with an enhancement of stress granules and disrupted RNA metabolism. Importantly, isogenic conversion of APOE4 to APOE3 attenuates the APOE4-related phenotypes in cerebral organoids from AD patients. Together, our study using human iPSC-organoids recapitulates APOE4-related phenotypes and suggests APOE4-related degenerative pathways contributing to AD pathogenesis.


2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Olivia Belbin ◽  
Beatriu Molina ◽  
Raúl Núñez‐Llaves ◽  
Julie Goossens ◽  
Nele Dewit ◽  
...  

1993 ◽  
Vol 33 (2) ◽  
pp. 190-199 ◽  
Author(s):  
Scheff W. Scheff ◽  
Douglas A. Price

1996 ◽  
Vol 17 (4) ◽  
pp. S186
Author(s):  
M. Martinez ◽  
D. Campion ◽  
D. Hannequin ◽  
A. Brice ◽  
T. Freebourg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document