scholarly journals Bayesian sensitivity analysis for causal effects from $2\times2$ tables in the presence of unmeasured confounding with application to presidential campaign visits

2017 ◽  
Vol 11 (4) ◽  
pp. 1974-1997 ◽  
Author(s):  
Luke Keele ◽  
Kevin M. Quinn
2017 ◽  
Vol 28 (2) ◽  
pp. 515-531 ◽  
Author(s):  
Lawrence C McCandless ◽  
Julian M Somers

Causal mediation analysis techniques enable investigators to examine whether the effect of the exposure on an outcome is mediated by some intermediate variable. Motivated by a data example from epidemiology, we consider estimation of natural direct and indirect effects on a survival outcome. An important concern is bias from confounders that may be unmeasured. Estimating natural direct and indirect effects requires an elaborate series of assumptions in order to identify the target quantities. The analyst must carefully measure and adjust for important predictors of the exposure, mediator and outcome. Omitting important confounders may bias the results in a way that is difficult to predict. In recent years, several methods have been proposed to explore sensitivity to unmeasured confounding in mediation analysis. However, many of these methods limit complexity by relying on a handful of sensitivity parameters that are difficult to interpret, or alternatively, by assuming that specific patterns of unmeasured confounding are absent. Instead, we propose a simple Bayesian sensitivity analysis technique that is indexed by four bias parameters. Our method has the unique advantage that it is able to simultaneously assess unmeasured confounding in the mediator–outcome, exposure–outcome and exposure–mediator relationships. It is a natural Bayesian extension of the sensitivity analysis methodologies of VanderWeele, which have been widely used in the epidemiology literature. We present simulation findings, and additionally, we illustrate the method in an epidemiological study of mortality rates in criminal offenders from British Columbia.


2021 ◽  
Vol 9 (1) ◽  
pp. 190-210
Author(s):  
Arvid Sjölander ◽  
Ola Hössjer

Abstract Unmeasured confounding is an important threat to the validity of observational studies. A common way to deal with unmeasured confounding is to compute bounds for the causal effect of interest, that is, a range of values that is guaranteed to include the true effect, given the observed data. Recently, bounds have been proposed that are based on sensitivity parameters, which quantify the degree of unmeasured confounding on the risk ratio scale. These bounds can be used to compute an E-value, that is, the degree of confounding required to explain away an observed association, on the risk ratio scale. We complement and extend this previous work by deriving analogous bounds, based on sensitivity parameters on the risk difference scale. We show that our bounds can also be used to compute an E-value, on the risk difference scale. We compare our novel bounds with previous bounds through a real data example and a simulation study.


2019 ◽  
Vol 104 (4) ◽  
pp. 577-596
Author(s):  
Qi Zhou ◽  
Yoo-Mi Chin ◽  
James D. Stamey ◽  
Joon Jin Song

2019 ◽  
Vol 188 (9) ◽  
pp. 1682-1685 ◽  
Author(s):  
Hailey R Banack

Abstract Authors aiming to estimate causal effects from observational data frequently discuss 3 fundamental identifiability assumptions for causal inference: exchangeability, consistency, and positivity. However, too often, studies fail to acknowledge the importance of measurement bias in causal inference. In the presence of measurement bias, the aforementioned identifiability conditions are not sufficient to estimate a causal effect. The most fundamental requirement for estimating a causal effect is knowing who is truly exposed and unexposed. In this issue of the Journal, Caniglia et al. (Am J Epidemiol. 2019;000(00):000–000) present a thorough discussion of methodological challenges when estimating causal effects in the context of research on distance to obstetrical care. Their article highlights empirical strategies for examining nonexchangeability due to unmeasured confounding and selection bias and potential violations of the consistency assumption. In addition to the important considerations outlined by Caniglia et al., authors interested in estimating causal effects from observational data should also consider implementing quantitative strategies to examine the impact of misclassification. The objective of this commentary is to emphasize that you can’t drive a car with only three wheels, and you also cannot estimate a causal effect in the presence of exposure misclassification bias.


2017 ◽  
Vol 167 (4) ◽  
pp. 285 ◽  
Author(s):  
A. Russell Localio ◽  
Catherine B. Stack ◽  
Michael E. Griswold

Sign in / Sign up

Export Citation Format

Share Document