scholarly journals Three favorite sites occurs infinitely often for one-dimensional simple random walk

2018 ◽  
Vol 46 (5) ◽  
pp. 2545-2561
Author(s):  
Jian Ding ◽  
Jianfei Shen
1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


1996 ◽  
Vol 33 (01) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2016 ◽  
Vol 163 (1) ◽  
pp. 173-185 ◽  
Author(s):  
OMER ANGEL ◽  
RICHÁRD BALKA ◽  
YUVAL PERES

AbstractGiven a sequence of n real numbers {Si}i⩽n, we consider the longest weakly increasing subsequence, namely i1 < i2 < . . . < iL with Sik ⩽ Sik+1 and L maximal. When the elements Si are i.i.d. uniform random variables, Vershik and Kerov, and Logan and Shepp proved that ${\mathbb E} L=(2+o(1)) \sqrt{n}$.We consider the case when {Si}i⩽n is a random walk on ℝ with increments of mean zero and finite (positive) variance. In this case, it is well known (e.g., using record times) that the length of the longest increasing subsequence satisfies ${\mathbb E} L\geq c\sqrt{n}$. Our main result is an upper bound ${\mathbb E} L\leq n^{1/2 + o(1)}$, establishing the leading asymptotic behavior. If {Si}i⩽n is a simple random walk on ℤ, we improve the lower bound by showing that ${\mathbb E} L \geq c\sqrt{n} \log{n}$.We also show that if {Si} is a simple random walk in ℤ2, then there is a subsequence of {Si}i⩽n of expected length at least cn1/3 that is increasing in each coordinate. The above one-dimensional result yields an upper bound of n1/2+o(1). The problem of determining the correct exponent remains open.


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

1998 ◽  
Vol 01 (04) ◽  
pp. 473-486 ◽  
Author(s):  
Roberto Baviera ◽  
Michele Pasquini ◽  
Maurizio Serva ◽  
Angelo Vulpiani

We consider a stochastic model of investment on an asset in a stock market for a prudent investor. she decides to buy permanent goods with a fraction α of the maximum amount of money owned in her life in order that her economic level never decreases. The optimal strategy is obtained by maximizing the exponential growth rate for a fixed α. We derive analytical expressions for the typical exponential growth rate of the capital and its fluctuations by solving an one-dimensional random walk with drift.


2010 ◽  
Vol 20 (6) ◽  
pp. 1091-1098 ◽  
Author(s):  
NORIO KONNO

Pólya showed in his 1921 paper that the generating function of the return probability for a two-dimensional random walk can be written in terms of an elliptic integral. In this paper we present a similar expression for a one-dimensional quantum walk.


2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


Sign in / Sign up

Export Citation Format

Share Document