scholarly journals Increasing subsequences of random walks

2016 ◽  
Vol 163 (1) ◽  
pp. 173-185 ◽  
Author(s):  
OMER ANGEL ◽  
RICHÁRD BALKA ◽  
YUVAL PERES

AbstractGiven a sequence of n real numbers {Si}i⩽n, we consider the longest weakly increasing subsequence, namely i1 < i2 < . . . < iL with Sik ⩽ Sik+1 and L maximal. When the elements Si are i.i.d. uniform random variables, Vershik and Kerov, and Logan and Shepp proved that ${\mathbb E} L=(2+o(1)) \sqrt{n}$.We consider the case when {Si}i⩽n is a random walk on ℝ with increments of mean zero and finite (positive) variance. In this case, it is well known (e.g., using record times) that the length of the longest increasing subsequence satisfies ${\mathbb E} L\geq c\sqrt{n}$. Our main result is an upper bound ${\mathbb E} L\leq n^{1/2 + o(1)}$, establishing the leading asymptotic behavior. If {Si}i⩽n is a simple random walk on ℤ, we improve the lower bound by showing that ${\mathbb E} L \geq c\sqrt{n} \log{n}$.We also show that if {Si} is a simple random walk in ℤ2, then there is a subsequence of {Si}i⩽n of expected length at least cn1/3 that is increasing in each coordinate. The above one-dimensional result yields an upper bound of n1/2+o(1). The problem of determining the correct exponent remains open.

1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


1949 ◽  
Vol 14 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Frederic B. Fitch

A demonstrably consistent theory of real numbers has been outlined by the writer in An extension of basic logic1 (hereafter referred to as EBL). This theory deals with non-negative real numbers, but it could be easily modified to deal with negative real numbers also. It was shown that the theory was adequate for proving a form of the fundamental theorem on least upper bounds and greatest lower bounds. More precisely, the following results were obtained in the terminology of EBL: If С is a class of U-reals and is completely represented in Κ′ and if some U-real is an upper bound of С, then there is a U-real which is a least upper bound of С. If D is a class of (U-reals and is completely represented in Κ′, then there is a U-real which is a greatest lower bound of D.


2018 ◽  
Vol 50 (01) ◽  
pp. 35-56 ◽  
Author(s):  
Nicolas Chenavier ◽  
Olivier Devillers

Abstract Let X := X n ∪ {(0, 0), (1, 0)}, where X n is a planar Poisson point process of intensity n. We provide a first nontrivial lower bound for the distance between the expected length of the shortest path between (0, 0) and (1, 0) in the Delaunay triangulation associated with X when the intensity of X n goes to ∞. Simulations indicate that the correct value is about 1.04. We also prove that the expected length of the so-called upper path converges to 35 / 3π2, yielding an upper bound for the expected length of the smallest path.


1992 ◽  
Vol 29 (2) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn, are considered and their asymptotic behavior is studied.


Fractals ◽  
2018 ◽  
Vol 26 (03) ◽  
pp. 1850030 ◽  
Author(s):  
YUFEI CHEN ◽  
MEIFENG DAI ◽  
XIAOQIAN WANG ◽  
YU SUN ◽  
WEIYI SU

For an infinite sequence [Formula: see text] of [Formula: see text] and [Formula: see text] with probability [Formula: see text] and [Formula: see text], we mainly study the multifractal analysis of one-dimensional biased walks. Let [Formula: see text] and [Formula: see text]. The Hausdorff and packing dimensions of the sets [Formula: see text] are [Formula: see text], which is the development of the theorem of Besicovitch [On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1934) 321–330] on random walk, saying that: For any [Formula: see text], the set [Formula: see text] has Hausdorff dimension [Formula: see text].


Open Physics ◽  
2003 ◽  
Vol 1 (4) ◽  
Author(s):  
Jozef Košík

AbstractWe present an overview of two models of quantum random walk. In the first model, the discrete quantum random walk, we present the explicit solution for the recurring amplitude of the quantum random walk on a one-dimensional lattice. We also introduce a new method of solving the problem of random walk in the most general case and use it to derive the hitting amplitude for quantum random walk on the hypercube. The second is a special model based on a local interaction between neighboring spin-1/2 particles on a one-dimensional lattice. We present explicit results for the relevant quantities and obtain an upper bound on the speed of convergence to limiting probability distribution.


1996 ◽  
Vol 33 (01) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


Sign in / Sign up

Export Citation Format

Share Document