scholarly journals Heat flow regularity, Bismut–Elworthy–Li’s derivative formula, and pathwise couplings on Riemannian manifolds with Kato bounded Ricci curvature

2021 ◽  
Vol 26 (none) ◽  
Author(s):  
Mathias Braun ◽  
Batu Güneysu

Author(s):  
Gizem Köprülü ◽  
Bayram Şahin

The purpose of this paper is to study anti-invariant Riemannian submersions from Sasakian manifolds onto Riemannian manifolds such that characteristic vector field is vertical or horizontal vector field. We first show that any anti-invariant Riemannian submersions from Sasakian manifold is not a Riemannian submersion with totally umbilical fiber. Then we introduce anti-invariant Riemannian submersions from Sasakian manifolds with totally contact umbilical fibers. We investigate the totally contact geodesicity of fibers of such submersions. Moreover, under this condition, we investigate Ricci curvature of anti-invariant Riemannian submersions from Sasakian manifolds onto Riemannian manifolds.



2013 ◽  
Vol 209 ◽  
pp. 1-22 ◽  
Author(s):  
Shouhei Honda

AbstractWe call a Gromov–Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. Furthermore, we prove that any Ricci limit space has integral Hausdorff dimension, provided that its Hausdorff dimension is not greater than 2. We also classify 1-dimensional Ricci limit spaces.



2007 ◽  
Vol 76 (1) ◽  
pp. 155-160 ◽  
Author(s):  
A. Carbonaro ◽  
G. Mauceri

In a recent paper Miranda Jr., Pallara, Paronetto and Preunkert have shown that the classical De Giorgi's heat kernel characterisation of functions of bounded variation on Euclidean space extends to Riemannian manifolds with Ricci curvature bounded from below and which satisfy a uniform lower bound estimate on the volume of geodesic balls of fixed radius. We give a shorter proof of the same result assuming only the lower bound on the Ricci curvature.



2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Najoua Gamara ◽  
Salem Eljazi ◽  
Habiba Guemri


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Najoua Gamara ◽  
Abdelhalim Hasnaoui ◽  
Akrem Makni

AbstractIn this article we prove a reverse Hölder inequality for the fundamental eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with lower Ricci curvature bounds. We also prove an isoperimetric inequality for the torsional ridigity of such domains





1983 ◽  
Vol 28 (3) ◽  
pp. 339-342 ◽  
Author(s):  
G.H. Smith

In this note we point out that a recent result of Leung concerning hypersurfaces of a Euclidean space has a simple generalisation to hypersurfaces of complete simply-connected Riemannian manifolds of non-positive constant sectional curvature.





Sign in / Sign up

Export Citation Format

Share Document