scholarly journals On the Oberlin affine curvature condition

2019 ◽  
Vol 168 (11) ◽  
pp. 2075-2126
Author(s):  
Philip T. Gressman
2021 ◽  
Vol 112 (1) ◽  
Author(s):  
Christine Rademacher ◽  
Hans-Bert Rademacher

AbstractFor a polygon $$x=(x_j)_{j\in \mathbb {Z}}$$ x = ( x j ) j ∈ Z in $$\mathbb {R}^n$$ R n we consider the midpoints polygon $$(M(x))_j=\left( x_j+x_{j+1}\right) /2.$$ ( M ( x ) ) j = x j + x j + 1 / 2 . We call a polygon a soliton of the midpoints mapping M if its midpoints polygon is the image of the polygon under an invertible affine map. We show that a large class of these polygons lie on an orbit of a one-parameter subgroup of the affine group acting on $$\mathbb {R}^n.$$ R n . These smooth curves are also characterized as solutions of the differential equation $$\dot{c}(t)=Bc (t)+d$$ c ˙ ( t ) = B c ( t ) + d for a matrix B and a vector d. For $$n=2$$ n = 2 these curves are curves of constant generalized-affine curvature $$k_{ga}=k_{ga}(B)$$ k ga = k ga ( B ) depending on B parametrized by generalized-affine arc length unless they are parametrizations of a parabola, an ellipse, or a hyperbola.


1994 ◽  
Vol 09 (03) ◽  
pp. 383-398 ◽  
Author(s):  
FRANÇOIS GIERES ◽  
STEFAN THEISEN

Starting from superdifferential operators in an N=1 superfield formulation, we present a systematic prescription for the derivation of classical N=1 and N=2 super W algebras by imposing a zero-curvature condition on the connection of the corresponding first-order system. We illustrate the procedure on the first nontrivial example (beyond the N=1 superconformal algebra) and also comment on the relation with the Gelfand-Dickey construction of W algebras.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850209 ◽  
Author(s):  
H. Wajahat A. Riaz ◽  
Mahmood ul Hassan

A noncommutative negative order AKNS (NC-AKNS(-1)) equation is studied. To show the integrability of the system, we present explicitly the underlying integrable structure such as Lax pair, zero-curvature condition, an infinite sequence of conserved densities, Darboux transformation (DT) and quasideterminant soliton solutions. Moreover, the NC-AKNS(-1) equation is compared with its commutative counterpart not only on the level of nonlinear evolution equation but also for the explicit solutions.


Author(s):  
Alina Stancu

Abstract We study a curvature flow on smooth, closed, strictly convex hypersurfaces in $\mathbb{R}^n$, which commutes with the action of $SL(n)$. The flow shrinks the initial hypersurface to a point that, if rescaled to enclose a domain of constant volume, is a smooth, closed, strictly convex hypersurface in $\mathbb{R}^n$ with centro-affine curvature proportional, but not always equal, to the centro-affine curvature of a fixed hypersurface. We outline some consequences of this result for the geometry of convex bodies and the logarithmic Minkowski inequality.


1992 ◽  
Vol 07 (18) ◽  
pp. 4293-4311 ◽  
Author(s):  
ASHOK DAS ◽  
WEN-JUI HUANG ◽  
SHIBAJI ROY

The N=2 fermionic extensions of the KdV equations are derived from the zero curvature condition associated with the graded Lie algebra of OSp(2/2). These equations lead to two bi-Hamiltonian systems, one of which is supersymmetric. We also derive the one-parameter family of N=2 supersymmetric KdV equations without a bi-Hamiltonian structure in this approach. Following our earlier proposal, we interpret the zero curvature condition as a gauge anomaly equation which brings out the underlying current algebra for the corresponding 2D supergravity theory. This current algebra is then used to obtain the operator product expansions of various fields of this theory.


2018 ◽  
Vol 167 (01) ◽  
pp. 133-157
Author(s):  
RAN JI

AbstractElton P. Hsu used probabilistic method to show that the asymptotic Dirichlet problem is uniquely solvable under the curvature condition −Ce(2−η)r(x) ≤ KM(x) ≤ −1 with η > 0. We give an analytical proof of the same statement. In addition, using this new approach we are able to establish two boundary Harnack inequalities under the curvature condition −Ce(2/3−η)r(x) ≤ KM(x) ≤ −1 with η > 0. This implies that there is a natural homeomorphism between the Martin boundary and the geometric boundary of M. As far as we know, this is the first result of this kind under unbounded curvature conditions. Our proof is a modification of an argument due to M. T. Anderson and R. Schoen.


Sign in / Sign up

Export Citation Format

Share Document