Unlocking the Mystery of the Origins of John von Neumann’s Growth Model

2021 ◽  
Vol 53 (4) ◽  
pp. 595-631
Author(s):  
Juan Carvajalino

In his famous “A Model of General Economic Equilibrium,” von Neumann wrote that it was “obvious to what kind of theoretical models [his] assumptions correspond.” To date, however, his sources of economic insights about the functioning of the continuously growing price-economy that he modeled have remained a total mystery. Based on archival material, this mystery is solved in this account by making visible the specific influences from economics and mathematics that inspired him. I argue that von Neumann’s 1937 paper resulted from a deep engagement with economics as it was emerging at the beginning of the 1930s and that this happened as he was travelling and crossing national boundaries while bridging distinct branches of mathematics with different local perspectives in economics. His encounters with Jacob Marschak in Berlin, Nicolas Kaldor in Budapest, and Frank Graham in Princeton as well as his reading of Walras’s, Wicksell’s and Cassel’s work would be key. I also explain how he came to realize that there existed a formal analogy between systems of linear equations and inequalities with which he characterized (stationary and dynamic) economies and the minimax theorem for two-person zero-sum games that he had conceived and proved in 1928.

2010 ◽  
Vol 12 (02) ◽  
pp. 115-137 ◽  
Author(s):  
HICHEM BEN-EL-MECHAIEKH ◽  
ROBERT W. DIMAND

Von Neumann proved the minimax theorem (existence of a saddle-point solution to 2 person, zero sum games) in 1928. While his second article on the minimax theorem, stating the proof, has long been translated from German, his first announcement of his result (communicated in French to the Academy of Sciences in Paris by Borel, who had posed the problem settled by Von Neumann's proof) is translated here for the first time. The proof presented by Von Neumann and Morgenstern (1944) is not Von Neumann's rather involved proof of 1928, but is based on what they called "The Theorem of the Alternative for Matrices" which is in essence a reformulation of an elegant and elementary result by Borel's student Jean Ville in 1938. Ville's argument was the first to bring to light the simplifying role of convexity and to highlight the connection between the existence of minimax and the solvability of systems of linear inequalities. It by-passes nontrivial topological fixed point arguments and allows the treatment of minimax by simpler geometric methods. This approach has inspired a number of seminal contributions in convex analysis including fixed point and coincidence theory for set-valued mappings. Ville's contributions are discussed briefly and von Neuman's original communication, Ville's note, and Borel's commentary on it are translated here for the first time.


Author(s):  
A.Yu. Bykov ◽  
M.V. Grishunin ◽  
I.A. Krygin

This paper deals with a continuous zero-sum game with constraints on resources between a defender allocating resources for protection of sites and an attacker choosing sites for attack. The problem is formulated so that each player would have to solve its own linear program with a fixed solution of the other player. We show that in this case the saddle point is located on the faces of simplices defining feasible solutions. We propose an algorithm of saddle point search based on search of the simplices' faces on hyperplanes of equal dimension. Each possible face is defined using a boolean vector defining states of variables and problem constraints. The search of faces is reduced to the search of feasible boolean vectors. In order to reduce computational complexity of the search we formulate the rules for removing patently unfeasible faces. Each point of a face belonging to an (m--1)-dimensional hyperplane is defined using m points of the hyperplane. We created an algorithm for generating these points. Two systems of linear equations must be solved in order to find the saddle point if it located on the faces of simplices belonging to hyperplanes of equal dimension. We created a generic algorithm of saddle point search on the faces located on hyperplanes of equal dimension. We present an example of solving a problem and the results of computational experiments


Author(s):  
Ignacio Palacios-Huerta

The movie A Beautiful Mind (2001) portrays the life and work of John F. Nash Jr., who received the Nobel Prize in Economics in 1994. A class of his theories deals with how people should behave in strategic situations that involve what are known as “mixed strategies,” that is, choosing among various possible strategies when no single one is always the best when you face a rational opponent. This chapter uses data from a specific play in soccer (a penalty kick) with professional players to provide the first complete test of a fundamental theorem in game theory: the minimax theorem. The minimax theorem can be regarded as a special case of the more general theory of Nash. It applies only to two-person, zero-sum or constant-sum games, whereas the Nash equilibrium concept can be used with any number of players and any mixture of conflict and common interest in the game.


Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


2015 ◽  
Vol 15 (01n02) ◽  
pp. 1550001
Author(s):  
ILKER NADI BOZKURT ◽  
HAI HUANG ◽  
BRUCE MAGGS ◽  
ANDRÉA RICHA ◽  
MAVERICK WOO

This paper introduces a type of graph embedding called a mutual embedding. A mutual embedding between two n-node graphs [Formula: see text] and [Formula: see text] is an identification of the vertices of V1 and V2, i.e., a bijection [Formula: see text], together with an embedding of G1 into G2 and an embedding of G2 into G1 where in the embedding of G1 into G2, each node u of G1 is mapped to π(u) in G2 and in the embedding of G2 into G1 each node v of G2 is mapped to [Formula: see text] in G1. The identification of vertices in G1 and G2 constrains the two embeddings so that it is not always possible for both to exhibit small congestion and dilation, even if there are traditional one-way embeddings in both directions with small congestion and dilation. Mutual embeddings arise in the context of finding preconditioners for accelerating the convergence of iterative methods for solving systems of linear equations. We present mutual embeddings between several types of graphs such as linear arrays, cycles, trees, and meshes, prove lower bounds on mutual embeddings between several classes of graphs, and present some open problems related to optimal mutual embeddings.


Sign in / Sign up

Export Citation Format

Share Document