scholarly journals Derived category automorphisms from mirror symmetry

2005 ◽  
Vol 127 (1) ◽  
pp. 1-34 ◽  
Author(s):  
R. Paul Horja
2020 ◽  
Vol 156 (7) ◽  
pp. 1310-1347
Author(s):  
Yankı Lekili ◽  
Alexander Polishchuk

Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $\mathbb{CP}^{n}$, for $k\geqslant n$, with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $\mathbb{C}P^{n}$ ($n$-dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $x_{1}x_{2}\ldots x_{n+1}=0$. By localizing, we deduce that the (fully) wrapped Fukaya category of the $n$-dimensional pair of pants is equivalent to the derived category of $x_{1}x_{2}\ldots x_{n+1}=0$. We also prove similar equivalences for finite abelian covers of the $n$-dimensional pair of pants.


Author(s):  
D. Huybrechts

This chapter gives pointers for more advanced topics, which require prerequisites that are beyond standard introductions to algebraic geometry. The Mckay correspondence relates the equivariant-derived category of a variety endowed with the action of a finite group and the derived category of a crepant resolution of the quotient. This chapter gives the results from Bridgeland, King, and Reid for a special crepant resolution provided by Hilbert schemes and of Bezrukavnikov and Kaledin for symplectic vector spaces. A brief discussion of Kontsevich's homological mirror symmetry is included, as well as a discussion of stability conditions on triangulated categories. Twisted sheaves and their derived categories can be dealt with in a similar way, and some of the results in particular for K3 surfaces are presented.


Author(s):  
D. Huybrechts

Spherical objects — motivated by considerations in the context of mirror symmetry — are used to construct special autoequivalences. Their action on cohomology can be described precisely, considering more than one spherical object often leads to complicated (braid) groups acting on the derived category. The results related to Beilinson are almost classical. Section 3 of this chapter gives an account of the Beilinson spectral sequence and how it is used to deduce a complete description of the derived category of the projective space. This will use the language of exceptional sequences and semi-orthogonal decompositions encountered here. The final section gives a simplified account of the work of Horja, which extends the theory of spherical objects and their associated twists to a broader geometric context.


2020 ◽  
Vol 156 (7) ◽  
pp. 1275-1309
Author(s):  
Andrei Căldăraru ◽  
Junwu Tu

We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.


2018 ◽  
Vol 2018 (743) ◽  
pp. 245-259 ◽  
Author(s):  
Ed Segal ◽  
Richard Thomas

Abstract The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry. We show that it can be embedded into the derived category of a certain Fano elevenfold. Our proof also generates related examples in different dimensions.


Author(s):  
Nick Sheridan ◽  
Ivan Smith

AbstractWe prove Kontsevich’s homological mirror symmetry conjecture for certain mirror pairs arising from Batyrev–Borisov’s ‘dual reflexive Gorenstein cones’ construction. In particular we prove HMS for all Greene–Plesser mirror pairs (i.e., Calabi–Yau hypersurfaces in quotients of weighted projective spaces). We also prove it for certain mirror Calabi–Yau complete intersections arising from Borisov’s construction via dual nef partitions, and also for certain Calabi–Yau complete intersections which do not have a Calabi–Yau mirror, but instead are mirror to a Calabi–Yau subcategory of the derived category of a higher-dimensional Fano variety. The latter case encompasses Kuznetsov’s ‘K3 category of a cubic fourfold’, which is mirror to an honest K3 surface; and also the analogous category for a quotient of a cubic sevenfold by an order-3 symmetry, which is mirror to a rigid Calabi–Yau threefold.


Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


Author(s):  
Jean-Luc Rouvière ◽  
Alain Bourret

The possible structural transformations during the sample preparations and the sample observations are important issues in electron microscopy. Several publications of High Resolution Electron Microscopy (HREM) have reported that structural transformations and evaporation of the thin parts of a specimen could happen in the microscope. Diffusion and preferential etchings could also occur during the sample preparation.Here we report a structural transformation of a germanium Σ=13 (510) [001] tilt grain boundary that occurred in a medium-voltage electron microscopy (JEOL 400KV).Among the different (001) tilt grain boundaries whose atomic structures were entirely determined by High Resolution Electron Microscopy (Σ = 5(310), Σ = 13 (320), Σ = 13 (510), Σ = 65 (1130), Σ = 25 (710) and Σ = 41 (910), the Σ = 13 (510) interface is the most interesting. It exhibits two kinds of structures. One of them, the M-structure, has tetracoordinated covalent bonds and is periodic (fig. 1). The other, the U-structure, is also tetracoordinated but is not strictly periodic (fig. 2). It is composed of a periodically repeated constant part that separates variable cores where some atoms can have several stable positions. The M-structure has a mirror glide symmetry. At Scherzer defocus, its HREM images have characteristic groups of three big white dots that are distributed on alternatively facing right and left arcs (fig. 1). The (001) projection of the U-structure has an apparent mirror symmetry, the portions of good coincidence zones (“perfect crystal structure”) regularly separate the variable cores regions (fig. 2).


2011 ◽  
Vol 29 (supplement) ◽  
pp. 283-304 ◽  
Author(s):  
Timothy R. Brick ◽  
Steven M. Boker

Among the qualities that distinguish dance from other types of human behavior and interaction are the creation and breaking of synchrony and symmetry. The combination of symmetry and synchrony can provide complex interactions. For example, two dancers might make very different movements, slowing each time the other sped up: a mirror symmetry of velocity. Examining patterns of synchrony and symmetry can provide insight into both the artistic nature of the dance, and the nature of the perceptions and responses of the dancers. However, such complex symmetries are often difficult to quantify. This paper presents three methods – Generalized Local Linear Approximation, Time-lagged Autocorrelation, and Windowed Cross-correlation – for the exploration of symmetry and synchrony in motion-capture data as is it applied to dance and illustrate these with examples from a study of free-form dance. Combined, these techniques provide powerful tools for the examination of the structure of symmetry and synchrony in dance.


Sign in / Sign up

Export Citation Format

Share Document