Global existence and asymptotic stability of mild solutions for stochastic evolution equations with nonlocal initial conditions

2017 ◽  
Vol 29 (2) ◽  
pp. 325-348 ◽  
Author(s):  
Pengyu Chen ◽  
Ahmed Abdelmonem ◽  
Yongxiang Li
Author(s):  
Pengyu Chen ◽  
Xuping Zhang ◽  
Yongxiang Li

AbstractIn this article, we are concerned with a class of fractional stochastic evolution equations with nonlocal initial conditions in Hilbert spaces. The existence of mild solutions is obtained under the situation that the nonlinear term satisfies some appropriate growth conditions by using fractional calculations, Schauder fixed point theorem, stochastic analysis theory,


Author(s):  
Yonghong Ding ◽  
Yongxiang Li

AbstractThis paper deals with the approximate controllability for a class of fractional stochastic evolution equations with nonlocal initial conditions in a Hilbert space. We delete the compactness condition or Lipschitz condition for nonlocal term appearing in various literatures, and only need to suppose some weak growth condition on the nonlocal term. The discussion is based on the fixed point theorem, diagonal argument and approximation techniques. In the end, an example is presented to illustrate the abstract theory.


2020 ◽  
Vol 18 (1) ◽  
pp. 616-631
Author(s):  
Yonghong Ding ◽  
Yongxiang Li

Abstract This article deals with the exact controllability for a class of fractional stochastic evolution equations with nonlocal initial conditions in a Hilbert space under the assumption that the semigroup generated by the linear part is noncompact. Our main results are obtained by utilizing stochastic analysis technique, measure of noncompactness and the Mönch fixed point theorem. In the end, an example is presented to illustrate that our theorems guarantee the effectiveness of controllability results in the infinite dimensional spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Jing Cui ◽  
Litan Yan

We consider a class of nonautonomous stochastic evolution equations in real separable Hilbert spaces. We establish a new composition theorem for square-mean almost automorphic functions under non-Lipschitz conditions. We apply this new composition theorem as well as intermediate space techniques, Krasnoselskii fixed point theorem, and Banach fixed point theorem to investigate the existence of square-mean almost automorphic mild solutions. Some known results are generalized and improved.


2018 ◽  
Vol 16 (1) ◽  
pp. 792-805
Author(s):  
Junfei Cao ◽  
Zaitang Huang

AbstractIn this paper we study a class of semilinear evolution equations with nonlocal initial conditions and give some new results on the existence of asymptotically periodic mild solutions. As one would expect, the results presented here would generalize and improve some results in this area.


2019 ◽  
Vol 22 (4) ◽  
pp. 1086-1112 ◽  
Author(s):  
Linxin Shu ◽  
Xiao-Bao Shu ◽  
Jianzhong Mao

Abstract In this paper, we consider the existence of mild solutions and approximate controllability for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order 1 < α < 2. As far as we know, there are few articles investigating on this issue. Firstly, the mild solutions to the equations are proved using Laplace transform of the Riemann-Liouville derivative. Moreover, the estimations of resolve operators involving the Riemann-Liouville fractional derivative of order 1 < α < 2 are given. Then, the existence results are obtained via the noncompact measurement strategy and the Mönch fixed point theorem. The approximate controllability of this nonlinear Riemann-Liouville fractional nonlocal stochastic systems of order 1 < α < 2 is concerned under the assumption that the associated linear system is approximately controllable. Finally, the approximate controllability results are obtained by using Lebesgue dominated convergence theorem.


Author(s):  
CARLO MARINELLI ◽  
MICHAEL RÖCKNER

In the semigroup approach to stochastic evolution equations, the fundamental issue of uniqueness of mild solutions is often "reduced" to the much easier problem of proving uniqueness for strong solutions. This reduction is usually carried out in a formal way, without really justifying why and how one can do that. We provide sufficient conditions for uniqueness of mild solutions to a broad class of semilinear stochastic evolution equations with coefficients satisfying a monotonicity assumption.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Li Xi-liang ◽  
Han Yu-liang

This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni” conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.


Sign in / Sign up

Export Citation Format

Share Document