Toxic Substances in Spinal Cord Injury

Neurosurgery ◽  
1979 ◽  
Vol 4 (3) ◽  
pp. 239-243 ◽  
Author(s):  
Sherman C. Stein ◽  
Roger Q. Cracco ◽  
Peter Farmer ◽  
Curtis A. Kiest

Abstract Several investigators have implicated norepinephrine and other toxic substances released in the region of a spinal cord injury in the genesis of the progressive pathological and clinical changes that follow spinal trauma. To test this hypothesis. we subjected cats to T-10 to T-12 laminectomy and monitored epidural spinal evoked potentials from sciatic nerve stimulation. The spinal subarachnoid space was perfused with normal saline, with norepinephrine solution, or with heparinized autologous blood or the pial surface of the spinal cord was exposed to macerated gray matter taken from the upper cervical cord. During 1- to 2-hour exposure periods, we noted no significant changes in the base line spinal evoked potentials. In another series of cats, we have shown that norepinephrine perfused over the spinal cord in this manner diffuses rapidly into the subpial white matter. Therefore, its failure to affect spinal evoked potentials does not represent a failure to penetrate the spinal cord. Putative toxins must originate either in extravasated blood or damaged neural tissue in the region of the spinal cord injury. The failure of ascending spinal tracts to react to blood or cord tissue in our experiment suggests that toxins are not involved in the spinal cord dysfunction that occurs soon after injury.

1989 ◽  
Vol 71 (5) ◽  
pp. 747-753 ◽  
Author(s):  
B. Barry Chehrazi ◽  
Oscar Scremin ◽  
Emilio E. Decima

✓ Forty-two cats were subjected to decerebration, thoracic and lumbar laminectomies, and isolation of the sciatic nerves. Spinal evoked potentials in response to bilateral sciatic nerve stimulation were recorded at L-3, and the spinal cord blood flow (SCBF) was measured by the hydrogen clearance technique. Thoracic cordotomy did not alter the lumbar SCBF or the central conduction time as determined by spinal evoked potentials. Thoracic cordotomy significantly lowered the lumbar spinal cord injury threshold. Continuous sciatic nerve stimulation increased the lumbar SCBF in normal and traumatized animals; however, it did not affect the spinal cord injury threshold as measured by recovery of the spinal evoked potentials. It appears that rostral spinal cord integrity is far more significant in recovery from spinal cord injury than the maintenance of regional SCBF.


2010 ◽  
Vol 193 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Shrivats Iyer ◽  
Anil Maybhate ◽  
Alessandro Presacco ◽  
Angelo H. All

2017 ◽  
Vol 108 ◽  
pp. 112-117 ◽  
Author(s):  
Aria Nouri ◽  
Julio Montejo ◽  
Xin Sun ◽  
Justin Virojanapa ◽  
Luis E. Kolb ◽  
...  

2010 ◽  
Vol 17 (9) ◽  
pp. 1159-1164 ◽  
Author(s):  
Gracee Agrawal ◽  
David Sherman ◽  
Anil Maybhate ◽  
Michael Gorelik ◽  
Douglas A. Kerr ◽  
...  

2021 ◽  
Author(s):  
Gustavo Balbinot ◽  
Guijin Li ◽  
Sukhvinder Kalsi-Ryan ◽  
Rainer Abel ◽  
Doris Maier ◽  
...  

Cervical spinal cord injury (SCI) severely impacts widespread bodily functions with extensive impairments for individuals, who prioritize regaining hand function. Although prior work has focused on the recovery at the person-level, the factors determining the recovery potential of individual muscles are poorly understood. There is a need for changing this paradigm in the field by moving beyond person-level classification of residual strength and sacral sparing to a muscle-specific analysis with a focus on the role of corticospinal tract (CST) sparing. The most striking part of human evolution involved the development of dextrous hand use with a respective expansion of the sensorimotor cortex controlling hand movements, which, because of the extensive CST projections, may constitute a drawback after SCI. Here, we investigated the muscle-specific natural recovery after cervical SCI in 748 patients from the European Multicenter Study about SCI (EMSCI), one of the largest datasets analysed to date. All participants were assessed within the first 4 weeks after SCI and re-assessed at 12, 24, and 48 weeks. Subsets of individuals underwent electrophysiological multimodal evaluations to discern CST and lower motor neuron (LMN) integrity [motor evoked potentials (MEP): N = 203; somatosensory evoked potentials (SSEP): N = 313; nerve conduction studies (NCS): N = 280]. We show the first evidence of the importance of CST sparing for proportional recovery in SCI, which is known in stroke survivors to represent the biological limits of structural and functional plasticity. In AIS D, baseline strength is a good predictor of segmental muscle strength recovery, while the proportionality in relation to baseline strength is lower for AIS B/C and breaks for AIS A. More severely impaired individuals showed non-linear and more variable recovery profiles, especially for hand muscles, while measures of CST sparing (by means of MEP) improved the prediction of hand muscle strength recovery. Therefore, assessment strategies for muscle-specific motor recovery in acute SCI improve by accounting for CST sparing and complement gross person-level predictions. The latter is of paramount importance for clinical trial outcomes and to target neurorehabilitation of upper limb function, where any single muscle function impacts the outcome of independence in cervical SCI.


Sign in / Sign up

Export Citation Format

Share Document