scholarly journals Gillis' Random Walks on Graphs

2005 ◽  
Vol 42 (1) ◽  
pp. 295-301 ◽  
Author(s):  
Nadine Guillotin-Plantard

We consider a random walker on a d-regular graph. Starting from a fixed vertex, the first step is a unit step in any one of the d directions, with common probability 1/d for each one. At any later step, the random walker moves in any one of the directions, with probability q for a reversal of direction and probability p for any other direction. This model was introduced and first studied by Gillis (1955), in the case when the graph is a d-dimensional square lattice. We prove that the Gillis random walk on a d-regular graph is recurrent if and only if the simple random walk on the graph is recurrent. The Green function of the Gillis random walk will be also given, in terms of that of the simple random walk.

2005 ◽  
Vol 42 (01) ◽  
pp. 295-301 ◽  
Author(s):  
Nadine Guillotin-Plantard

We consider a random walker on ad-regular graph. Starting from a fixed vertex, the first step is a unit step in any one of theddirections, with common probability 1/dfor each one. At any later step, the random walker moves in any one of the directions, with probabilityqfor a reversal of direction and probabilitypfor any other direction. This model was introduced and first studied by Gillis (1955), in the case when the graph is ad-dimensional square lattice. We prove that the Gillis random walk on ad-regular graph is recurrent if and only if the simple random walk on the graph is recurrent. The Green function of the Gillis random walk will be also given, in terms of that of the simple random walk.


1999 ◽  
Vol 36 (02) ◽  
pp. 320-333
Author(s):  
Howard M. Taylor

Consider the random walk {Sn} whose summands have the distributionP(X=0) = 1-(2/π), andP(X= ±n) = 2/[π(4n2−1)], forn≥ 1. This random walk arises when a simple random walk in the integer plane is observed only at those instants at which the two coordinates are equal. We derive the fundamental matrix, or Green function, for the process on the integral [0,N] = {0,1,…,N}, and from this, an explicit formula for the mean timexkfor the random walk starting fromS0=kto exit the interval. The explicit formula yields the limiting behavior ofxkasN→ ∞ withkfixed. For the random walk starting from zero, the probability of exiting the interval on the right is obtained. By lettingN→ ∞ in the fundamental matrix, the Green function on the interval [0,∞) is found, and a simple and explicit formula for the probability distribution of the point of entry into the interval (−∞,0) for the random walk starting fromk= 0 results. The distributions for some related random variables are also discovered.Applications to stress concentration calculations in discrete lattices are briefly reviewed.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Serguei Yu. Popov

International audience We review some recent results for a system of simple random walks on graphs, known as \emphfrog model. Also, we discuss several modifications of this model, and present a few open problems. A simple version of the frog model can be described as follows: There are active and sleeping particles living on some graph. Each active particle performs a simple random walk with discrete time and at each moment it may disappear with probability 1-p. When an active particle hits a sleeping particle, the latter becomes active.


1999 ◽  
Vol 36 (2) ◽  
pp. 320-333 ◽  
Author(s):  
Howard M. Taylor

Consider the random walk {Sn} whose summands have the distribution P(X=0) = 1-(2/π), and P(X = ± n) = 2/[π(4n2−1)], for n ≥ 1. This random walk arises when a simple random walk in the integer plane is observed only at those instants at which the two coordinates are equal. We derive the fundamental matrix, or Green function, for the process on the integral [0,N] = {0,1,…,N}, and from this, an explicit formula for the mean time xk for the random walk starting from S0 = k to exit the interval. The explicit formula yields the limiting behavior of xk as N → ∞ with k fixed. For the random walk starting from zero, the probability of exiting the interval on the right is obtained. By letting N → ∞ in the fundamental matrix, the Green function on the interval [0,∞) is found, and a simple and explicit formula for the probability distribution of the point of entry into the interval (−∞,0) for the random walk starting from k = 0 results. The distributions for some related random variables are also discovered.Applications to stress concentration calculations in discrete lattices are briefly reviewed.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


1990 ◽  
Vol 4 (4) ◽  
pp. 489-492 ◽  
Author(s):  
José Luis Palacios

Aleliunas et al. [3] proved that for a random walk on a connected raph G = (V, E) on N vertices, the expected minimum number of steps to visit all vertices is bounded by 2|E|(N - 1), regardless of the initial state. We give here a simple proof of that result through an equality involving hitting times of vertices that can be extended to an inequality for hitting times of edges, thus obtaining a bound for the expected minimum number of steps to visit all edges exactly once in each direction.


2014 ◽  
Vol 51 (4) ◽  
pp. 1065-1080 ◽  
Author(s):  
Massimo Campanino ◽  
Dimitri Petritis

Simple random walks on a partially directed version ofZ2are considered. More precisely, vertical edges between neighbouring vertices ofZ2can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function; the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of simple random walk that is recurrent or transient, and show that there exists a critical value of the decay power, above which it is almost surely recurrent and below which it is almost surely transient.


2007 ◽  
Vol 09 (04) ◽  
pp. 585-603 ◽  
Author(s):  
NOGA ALON ◽  
ITAI BENJAMINI ◽  
EYAL LUBETZKY ◽  
SASHA SODIN

We compute the mixing rate of a non-backtracking random walk on a regular expander. Using some properties of Chebyshev polynomials of the second kind, we show that this rate may be up to twice as fast as the mixing rate of the simple random walk. The closer the expander is to a Ramanujan graph, the higher the ratio between the above two mixing rates is. As an application, we show that if G is a high-girth regular expander on n vertices, then a typical non-backtracking random walk of length n on G does not visit a vertex more than [Formula: see text] times, and this result is tight. In this sense, the multi-set of visited vertices is analogous to the result of throwing n balls to n bins uniformly, in contrast to the simple random walk on G, which almost surely visits some vertex Ω( log n) times.


Sign in / Sign up

Export Citation Format

Share Document