scholarly journals Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

Development ◽  
2011 ◽  
Vol 138 (16) ◽  
pp. 3441-3449 ◽  
Author(s):  
Conor W. Sipe ◽  
Xiaowei Lu
Neuroreport ◽  
2009 ◽  
Vol 20 (7) ◽  
pp. 689-694 ◽  
Author(s):  
Yayoi S. Kikkawa ◽  
Takayuki Nakagawa ◽  
Rie T. Horie ◽  
Juichi Ito

Author(s):  
Jing Liu ◽  
Shengxiong Wang ◽  
Yan Lu ◽  
Haoyu Wang ◽  
Fangfang Wang ◽  
...  

2007 ◽  
Vol 585 (3) ◽  
pp. 791-803 ◽  
Author(s):  
Guiying Cui ◽  
Alexander C. Meyer ◽  
Irina Calin-Jageman ◽  
Jakob Neef ◽  
Françoise Haeseleer ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 458 ◽  
Author(s):  
Kun Hou ◽  
Hui Jiang ◽  
Md. Rezaul Karim ◽  
Chao Zhong ◽  
Zhouwen Xu ◽  
...  

Barhl1, a mouse homologous gene of Drosophila BarH class homeobox genes, is highly expressed within the inner ear and crucial for the long-term maintenance of auditory hair cells that mediate hearing and balance, yet little is known about the molecular events underlying Barhl1 regulation and function in hair cells. In this study, through data mining and in vitro report assay, we firstly identified Barhl1 as a direct target gene of Atoh1 and one E-box (E3) in Barhl1 3’ enhancer is crucial for Atoh1-mediated Barhl1 activation. Then we generated a mouse embryonic stem cell (mESC) line carrying disruptions on this E3 site E-box (CAGCTG) using CRISPR/Cas9 technology and this E3 mutated mESC line is further subjected to an efficient stepwise hair cell differentiation strategy in vitro. Disruptions on this E3 site caused dramatic loss of Barhl1 expression and significantly reduced the number of induced hair cell-like cells, while no affections on the differentiation toward early primitive ectoderm-like cells and otic progenitors. Finally, through RNA-seq profiling and gene ontology (GO) enrichment analysis, we found that this E3 box was indispensable for Barhl1 expression to maintain hair cell development and normal functions. We also compared the transcriptional profiles of induced cells from CDS mutated and E3 mutated mESCs, respectively, and got very consistent results except the Barhl1 transcript itself. These observations indicated that Atoh1-mediated Barhl1 expression could have important roles during auditory hair cell development. In brief, our findings delineate the detail molecular mechanism of Barhl1 expression regulation in auditory hair cell differentiation.


2020 ◽  
Vol 21 (22) ◽  
pp. 8649
Author(s):  
Xin Deng ◽  
Zhengqing Hu

Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5–7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.


Sign in / Sign up

Export Citation Format

Share Document