scholarly journals Dynamic temporal requirement of Wnt1 in midbrain dopamine neuron development

Development ◽  
2013 ◽  
Vol 140 (6) ◽  
pp. 1342-1352 ◽  
Author(s):  
J. Yang ◽  
A. Brown ◽  
D. Ellisor ◽  
E. Paul ◽  
N. Hagan ◽  
...  
2003 ◽  
Vol 480 (1-3) ◽  
pp. 75-88 ◽  
Author(s):  
Marten P. Smidt ◽  
Simone M. Smits ◽  
J.Peter H. Burbach

Stem Cells ◽  
2012 ◽  
Vol 30 (5) ◽  
pp. 865-875 ◽  
Author(s):  
Julianna Kele ◽  
Emma R. Andersson ◽  
J. Carlos Villaescusa ◽  
Lukas Cajanek ◽  
Clare L. Parish ◽  
...  

2012 ◽  
Vol 372 (2) ◽  
pp. 249-262 ◽  
Author(s):  
Debra Ellisor ◽  
Caroline Rieser ◽  
Bettina Voelcker ◽  
Jason T. Machan ◽  
Mark Zervas

2011 ◽  
Vol 286 (18) ◽  
pp. 15641-15651 ◽  
Author(s):  
Sehyoun Yoon ◽  
Mi-hyun Choi ◽  
Min Seok Chang ◽  
Ja-Hyun Baik

The dopamine D2 receptor (D2R) plays an important role in mesencephalic dopaminergic neuronal development, particularly coupled with extracellular signal-regulated kinase (ERK) activation. Wnt5a protein is known to regulate the development of dopaminergic neurons. We analyzed the effect of Wnt5a on dopaminergic neuron development in mesencephalic primary cultures from wild-type (WT) and D2R knock-out (D2R−/−) mice. Treatment with Wnt5a increased the number and neuritic length of dopamine neurons in primary mesencephalic neuronal cultures from WT mice, but not from D2R−/− mice. The effect of Wnt5a was completely blocked by treatment with D2R antagonist or inhibitors of MAPK or EGFR. Wnt5a-mediated ERK activation in mesencephalic neuronal cultures was inhibited by treatment of D2R antagonist and EGFR inhibitors in WT mice. However, these regulations were not observed for D2R−/− mice. Co-immunoprecipitation and displacement of [3H]spiperone from D2R by Wnt5a demonstrated that Wnt5a could bind with D2R. This interaction was confirmed by GST pulldown assays demonstrating that the domain including transmembrane domain 4, second extracellular loop, and transmembrane domain 5 of D2R binds to Wnt5a. These results suggest that the interaction between D2R and Wnt5a has an important role in dopamine neuron development in association with EGFR and the ERK pathway.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Amanda L. Brown ◽  
Trevor A. Day ◽  
Christopher V. Dayas ◽  
Doug W. Smith

The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.


2017 ◽  
Author(s):  
Benjamin T. Saunders ◽  
Jocelyn M. Richard ◽  
Elyssa B. Margolis ◽  
Patricia H. Janak

Environmental cues, through Pavlovian learning, become conditioned stimuli that guide animals towards the acquisition of “rewards” (i.e., food) that are necessary for survival. Here, we test the fundamental role of midbrain dopamine neurons in conferring predictive or motivational properties to cues, independent of external rewards. We demonstrate that phasic optogenetic excitation of dopamine neurons throughout the midbrain, when presented in temporal association with discrete sensory cues, is sufficient to instantiate those cues as conditioned stimuli that subsequently both evoke dopamine neuron activity on their own, and elicit cue-locked conditioned behaviors. Critically, we identify highly parcellated behavioral functions for dopamine neuron subpopulations projecting to discrete regions of striatum, revealing dissociable mesostriatal systems for the generation of incentive value and movement invigoration. These results show that dopamine neurons orchestrate Pavlovian conditioning via functionally heterogeneous, circuit-specific motivational signals to shape cue-controlled behavior.


2019 ◽  
Vol 116 (9) ◽  
pp. 3817-3826 ◽  
Author(s):  
Alessandro Pristerà ◽  
Craig Blomeley ◽  
Emanuel Lopes ◽  
Sarah Threlfell ◽  
Elisa Merlini ◽  
...  

Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.


Sign in / Sign up

Export Citation Format

Share Document