Mutant expression of male copulatory bursa surface markers in Caenorhabditis elegans

Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 485-495 ◽  
Author(s):  
C.D. Link ◽  
C.W. Ehrenfels ◽  
W.B. Wood

In a search for molecular markers of male tail morphogenesis in C. elegans, we have detected two surface markers that are specifically observed in the copulatory bursa of adult males and the vulva of adult hermaphrodites. These markers are defined by binding of a monoclonal antibody (Ab117) and the lectin wheat germ agglutinin (WGA) to live intact animals. Expression of these markers is dependent on sex, stage and anterior-posterior position in the animal. Four of ten mutants with specific defects in bursal development show altered expression of one or both markers. Because the WGA marker can be expressed in intersexual animals with very little bursal development, posterior surface expression of this marker can serve as an indication of subtle masculinization of hermaphrodites. The timing of expression of these markers is not affected by heterochronic mutations that cause larval animals to express adult cuticles or adult animals to express larval cuticles, indicating that marker expression can be uncoupled from general cuticle development. Mutant lin-22 males, which have an anterior-to-posterior transformation of cell fates in the lateral hypodermis, ectopically express both markers in a manner consistent with a ‘posteriorization’ of positional information in these animals. These markers should be useful for the isolation and characterization of mutants defective in bursal and vulval development, sex determination and expression of anterior-posterior positional information.

Author(s):  
Dorothy Benton ◽  
Eva C Jaeger ◽  
Arielle Kilner ◽  
Ashley Kimble ◽  
Josh Lowry ◽  
...  

Abstract Puromycin-sensitive aminopeptidases are found across phyla and are known to regulate the cell-cycle and play a protective role in neurodegenerative disease. PAM-1 is a puromycin-sensitive aminopeptidase important for meiotic exit and polarity establishment in the one-cell Caenorhabditis elegans embryo. Despite conservation of this aminopeptidase, little is known about its targets during development. In order to identify novel interactors, we conducted a suppressor screen and isolated four suppressing mutations in three genes that partially rescued the maternal-effect lethality of pam-1 mutants. Suppressed strains show improved embryonic viability and polarization of the anterior-posterior axis. We identified a missense mutation in wee-1.3 in one of these suppressed strains. WEE-1.3 is an inhibitory kinase that regulates maturation promoting factor. While the missense mutation suppressed polarity phenotypes in pam-1, it does so without restoring centrosome-cortical contact or altering the cortical actomyosin cytoskeleton. To see if PAM-1 and WEE-1.3 interact in other processes, we examined oocyte maturation. While depletion of wee-1.3 causes sterility due to precocious oocyte maturation, this effect was lessened in pam-1 worms, suggesting that PAM-1 and WEE-1.3 interact in this process. Levels of WEE-1.3 were comparable between wild-type and pam-1 strains, suggesting that WEE-1.3 is not a direct target of the aminopeptidase. Thus, we have established an interaction between PAM-1 and WEE-1.3 in multiple developmental processes and have identified suppressors that are likely to further our understanding of the role of puromycin-sensitive aminopeptidases during development.


2021 ◽  
Vol 9 (5) ◽  
pp. 890
Author(s):  
Pietro Tedesco ◽  
Fortunato Palma Esposito ◽  
Antonio Masino ◽  
Giovanni Andrea Vitale ◽  
Emiliana Tortorella ◽  
...  

Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5–40 °C), pHs (5.5–8.5), and salinities (0–15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.


Genetics ◽  
2021 ◽  
Author(s):  
Hana E Littleford ◽  
Karin Kiontke ◽  
David H A Fitch ◽  
Iva Greenwald

Abstract Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. C. elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female Distal Tip Cells (fDTC), while the Anchor Cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position, and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that HLH-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.


Development ◽  
2001 ◽  
Vol 128 (20) ◽  
pp. 3987-3994 ◽  
Author(s):  
Gilbert Bernier ◽  
Wolfgang Vukovich ◽  
Lorenz Neidhardt ◽  
Bernhard G. Herrmann ◽  
Peter Gruss

The transcription factor Pax6 is required for eye morphogenesis in humans, mice and insects, and can induce ectopic eye formation in vertebrate and invertebrate organisms. Although the role of Pax6 has intensively been studied, only a limited number of genes have been identified that depend on Pax6 activity for their expression in the mammalian visual system. Using a large-scale in situ hybridization screen approach, we have identified a novel gene expressed in the mouse optic vesicle. This gene, Necab, encodes a putative cytoplasmic Ca2+-binding protein and coincides with Pax6 expression pattern in the neural ectoderm of the optic vesicle and in the forebrain pretectum. Remarkably, Necab expression is absent in both structures in Pax6 mutant embryos. By contrast, the optic vesicle-expressed homeobox genes Rx, Six3, Otx2 and Lhx2 do not exhibit an altered expression pattern. Using gain-of-function experiments, we show that Pax6 can induce ectopic expression of Necab, suggesting that Necab is a direct or indirect transcriptional target of Pax6. In addition, we have found that Necab misexpression can induce ectopic expression of the homeobox gene Chx10, a transcription factor implicated in retina development. Taken together, our results provide evidence that Necab is genetically downstream of Pax6 and that it is a part of a signal transduction pathway in retina development.


Sign in / Sign up

Export Citation Format

Share Document