Mullerian inhibiting substance production and testicular migration and descent in the pouch young of a marsupial

Development ◽  
1988 ◽  
Vol 104 (4) ◽  
pp. 549-556 ◽  
Author(s):  
J.M. Hutson ◽  
G. Shaw ◽  
W.S. O ◽  
R.V. Short ◽  
M.B. Renfree

The ontogeny of Mullerian inhibiting substance (MIS) production by the developing testis of an Australian marsupial, the tammar wallaby (Macropus eugenii), was determined during pouch life using an organ-culture bioassay of mouse fetal urogenital ridge. This information was related to the morphological events during testicular migration and descent. MIS biological activity was found in testes (but not ovaries or liver) of pouch young from 2 to 85 days of age. MIS production had commenced by day 2, which is within a day of the first gross morphological signs of testicular differentiation. Mullerian duct regression occurred between 10 and 30 days, which partly coincided with testicular migration to the inguinal region and enlargement of the gubernacular bulb (15 to 30 days). These observations are consistent with the hypothesis that MIS may be involved in testicular transabdominal migration. The epididymis commenced development and growth only after the testis had descended through the inguinal ring. This provides no support for the suggestion that the epididymis is involved in testicular descent into the scrotum. The basic sequence of events in post-testicular sexual differentiation in the wallaby is sufficiently similar to that seen in eutherian mammals to make it an excellent experimental model for future studies of testicular differentiation, migration and descent.

1990 ◽  
Vol 2 (1) ◽  
pp. 79 ◽  
Author(s):  
TP Fletcher ◽  
G Shaw ◽  
MB Renfree

Female tammar wallabies were treated with the dopamine agonist bromocriptine at the end of pregnancy to suppress the peripartum pulse of plasma prolactin. The animals were subsequently observed, and a series of blood samples taken to define the hormonal profiles before and immediately after parturition. Birth was observed in 4/5 control animals and occurred in 8/9 bromocriptine-treated animals. The peripartum peak in plasma PGFM concentrations was not affected by bromocriptine although the pulse of prolactin normally seen at parturition was completely abolished. The timing of luteolysis was apparently unaffected, as plasma progesterone concentrations fell similarly in both treated and control animals immediately after parturition. However, all of the neonates of the bromocriptine-treated animals died within 24 h, possibly because of a failure to establish lactation. Subsequent onset of post-partum oestrus was delayed or absent both in control and in bromocriptine-treated animals, suggesting that the frequent blood sampling and disturbances in the peripartum period interfered with these endocrine processes. It is concluded that both prolactin and prostaglandin can induce luteolysis in the pregnant wallaby, but that the normal sequence of events results from a signal of fetal origin inducing a prostaglandin release from the uterus, which in turn releases a pulse of prolactin that induces a progesterone decline.


Reproduction ◽  
2002 ◽  
pp. 73-83 ◽  
Author(s):  
D Coveney ◽  
G Shaw ◽  
MB Renfree

This study reports the effect of oestrogen treatment on the development of the genital ducts, prostate gland, testicular descent and inguinal canal closure in male tammar wallaby young treated with oestrogen over four time spans during the first 25 days of pouch life (days 0-10, 10-15, 15-25 and 0-25) and sampled at day 50. In control males, the Mullerian ducts had regressed and the Wolffian ducts had developed into the vas deferens and epididymis. The prostate gland had formed epithelial buds extending from the ventral, lateral and posterior walls of the urethra. The testes were in the neck of the scrotum and the gubernaculum and processus vaginalis were present at the base of the scrotum. In most males treated with oestradiol from day 0 to day 25, the testes had failed to descend by day 50. The gubernaculae were long and thin. The retained Mullerian ducts formed a lateral vaginal expansion like that of normal day 50 females. The Wolffian ducts of the males treated on days 0-25 were regressed, but were present in males in the other three treatment groups. The prostate glands were hyperplastic and epithelial budding was highly invasive. Some treated males from the day 10-25 and 0-25 groups had inguinal hernias. These results demonstrate that oestrogen treatment has profound effects on the development of the internal genitalia of a male marsupial, preventing inguinal closure and interfering with testicular descent. Therefore, the tammar wallaby may provide a useful experimental model animal in which to investigate the hormonal control of testicular migration and closure of the inguinal canal.


1993 ◽  
Vol 49 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Teruko Taketo ◽  
Jamilah Saeed ◽  
Tom Manganaro ◽  
Masahiko Takahashi ◽  
Patricia K. Donahoe

2005 ◽  
Vol 53 (6) ◽  
pp. 389 ◽  
Author(s):  
Natasha Sankovic ◽  
Wayne Bawden ◽  
John Martyn ◽  
Jennifer A. M. Graves ◽  
Kurt Zuelke

With the accelerating recognition of the power of comparative genomics, there is now enormous interest in sequencing the genomes of a broad range of species. Marsupials diverged at an important evolutionary time. The model Australian marsupial, the tammar wallaby (Macropus eugenii), has long been a resource for biological and genetic studies of marsupials, and the availability of a bacterial artificial chromosome (BAC) library will be a valuable resource in these studies. A tammar wallaby BAC library was constructed using pRazorBAC vector. It contains 55 296 clones with an average insert size of 108 kb, representing 2.2 times coverage of the wallaby genome (based on an estimated 2.7 × 109 bp haploid genome size). The library was arrayed in 384-well plates, and spotted in duplicate onto nylon membranes. Screening these membranes has yielded clones containing 34 single-copy genes distributed over the genome, while it failed for only one gene. Each probe isolated 1–12 BAC clones and, to date, no chimeric clones have been found. This BAC library will constitute an invaluable resource for creating physical maps, positional cloning of genes and other sequences in the tammar wallaby, as well as comparative mapping studies in mammals.


2019 ◽  
Vol 31 (7) ◽  
pp. 1252 ◽  
Author(s):  
Elizabeth A. Pharo

Marsupials have a very different reproductive strategy to eutherians. An Australian marsupial, the tammar wallaby (Macropus eugenii) has a very short pregnancy of about 26.5 days, with a comparatively long lactation of 300–350 days. The tammar mother gives birth to an altricial, approximately 400 mg young that spends the first 200 days postpartum (p.p.) in its mother’s pouch, permanently (0–100 days p.p.; Phase 2A) and then intermittently (100–200 days p.p.; Phase 2B) attached to the teat. The beginning of Phase 3 marks the first exit from the pouch (akin to the birth of a precocious eutherian neonate) and the supplementation of milk with herbage. The marsupial mother progressively alters milk composition (proteins, fats and carbohydrates) and individual milk constituents throughout the lactation cycle to provide nutrients and immunological factors that are appropriate for the considerable physiological development and growth of her pouch young. This review explores the changes in tammar milk components that occur during the lactation cycle in conjunction with the development of the young.


Sign in / Sign up

Export Citation Format

Share Document