Molecular characteristics of cytostatic factors in amphibian egg cytosols

Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 799-808
Author(s):  
E.K. Shibuya ◽  
Y. Masui

In amphibians, zygotes microinjected with cytosol of unactivated eggs are arrested at metaphase of mitosis. The factor responsible for this effect has been designated ‘cytostatic factor, (CSF)’. CSF is inactivated by Ca2+ addition to cytosols. During storage of the Ca(2+)-containing cytosols, a stable CSF activity develops. Therefore, the first Ca(2+)-sensitive CSF and the second Ca(2+)-insensitive CSF have been referred to as primary CSF (CSF-1) and secondary CSF (CSF-2), respectively. We have partially purified CSF-1, which had been stabilized with NaF and ATP, and CSF-2 from cytosols of Rana pipiens eggs by ammonium sulphate (AmS) precipitation and sucrose density gradient centrifugation or gel filtration, and investigated their molecular characteristics. CSF-1 was sensitive to protease, but resistant to RNAse, and inactivated within 2 h at 25 degrees C. CSF-1 could be sedimented in a sucrose density gradient from a fresh cytosol or its crude fraction precipitated at 20–30% saturation of AmS, showing the sedimentation coefficient 3S. When analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), all the proteins in partially purified CSF-1 samples entered the gel and were separated into numerous peptide bands. In contrast, CSF-2 was an extremely large molecule, being eluted from Sepharose columns as molecules larger than 2 × 10(6), and failed to enter the gel when analyzed by SDS-PAGE. It could be purified 40 times from cytosols. CSF-2 was a highly stable molecule, being neither inactivated nor dissociated at pH 11.5 or by 4M-NaCl and LiCl and 8 M-urea. It was also resistant to RNAse treatment. However, CSF-2 could be broken down into small peptides of variable sizes by trypsin, alpha-chymotrypsin, and papain, but not by S. aureus V8 protease, although it was less sensitive to proteases than CSF-1. The dose-dependency test showed that the activity of CSF-2 is independent of its concentration and that an amount of CSF-2 could cause cleavage arrest earlier when injected into a blastomere in a larger volume.

1976 ◽  
Vol 155 (1) ◽  
pp. 107-115 ◽  
Author(s):  
T Noguchi ◽  
E Okuno ◽  
Y Minatogawa ◽  
R Kido

1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.


1981 ◽  
Vol 195 (1) ◽  
pp. 83-92 ◽  
Author(s):  
N S Beer ◽  
W T Griffiths

A procedure for the purification of the enzyme NADPH:protochlorophyllide oxidoreductase is described. This involves fractionation of sonicated oat etioplast membranes by discontinuous-sucrose-density-gradient centrifugation, which gives membranes in which the enzyme is present at a high specific activity. The enzyme is solubilized from the membranes with Triton X-100, followed by gel filtration of the extract; enzyme activity is eluted in fractions corresponding to a mol.wt of approx. 35000. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the enzyme-containing fractions from gel filtration shows two peptides, of mol.wts. approx. 35000 and 37000.


1980 ◽  
Vol 189 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Etsuo Okuno ◽  
Yohsuke Minatogawa ◽  
Masayuki Nakamura ◽  
Naoki Kamoda ◽  
Junko Nakanishi ◽  
...  

Kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase were co-purified and crystallized as yellow cubes from human liver particulate fraction. The crystalline enzyme was homogeneous by the criteria of electrophoresis, isoelectric focusing, gel filtration, sucrose-density-gradient centrifugation and analytical ultracentrifugation. The molecular weight of the enzyme was calculated as approx. 90000, 89000 and 99000 by the use of gel filtration, analytical ultracentrifugation and sucrose-density-gradient centrifugation respectively, with two identical subunits. The enzyme has a s20,w value of 5.23S, an isoelectric point of 8.3 and a pH optimum between 9.0 and 9.5. The enzyme solution showed absorption maxima at 280 and 420nm. The enzyme catalysed transamination between several l-amino acids and pyruvate or glyoxylate. The order of effectiveness of amino acids was alanine>serine>glutamine>glutamate>methionine>kynurenine = phenylalanine = asparagine>valine>histidine>lysine>leucine>isoleucine>arginine>tyrosine = threonine>aspartate, with glyoxylate as amino acceptor. The enzyme was active with glyoxylate, oxaloacetate, hydroxypyruvate, pyruvate, 4-methylthio-2-oxobutyrate and 2-oxobutyrate, but showed little activity with phenylpyruvate, 2-oxoglutarate and 2-oxoadipate, with kynurenine as amino donor. Kynurenine–glyoxylate aminotransferase activity was competitively inhibited by the addition of l-alanine or l-serine. From these results we conclude that kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase and serine–pyruvate aminotransferase activities of human liver are catalysed by a single protein. Kinetic parameters for the kynurenine–glyoxylate aminotransferase, alanine–glyoxylate aminotransferase, serine–pyruvate aminotransferase and alanine–hydroxypyruvate aminotransferase reactions of the enzyme are presented.


1986 ◽  
Vol 235 (1) ◽  
pp. 81-85 ◽  
Author(s):  
S K Ghosh ◽  
N K Mukhopadhyay ◽  
S Majumder ◽  
S K Bose

The final purification of the three-fraction enzyme complex mycobacillin synthetase was done by hydroxyapatite column chromatography and sucrose-density-gradient centrifugation; each of the fractions obtained migrates as a single component in SDS/polyacrylamide-gel electrophoresis and gel electrofocusing. The Mr of the enzyme fractions A, B and C by gel filtration is 260 000, 190 000 and 105 000, and that by SDS/polyacrylamide-gel electrophoresis is 252 000, 198 000 and 108 000 respectively. None of the enzyme fractions appears to possess subunit structure.


1969 ◽  
Vol 62 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Olav Unhjem ◽  
Kjell J. Tveter ◽  
Asbjørn Aakvaag

ABSTRACT Following administration of (1,2-3H)-testosterone to castrated rats or incubation of prostatic tissue with the same steroid, a gel filtration technique has been used for the isolation of a soluble steroid-macromolecular complex from the tissues. Subsequent steroid analyses revealed that 5α-androstan-17β-ol-3-one was the major component associated with the macromolecules both in the in vivo and by in vitro experiments. The complex is destroyed by proteolytic enzymes like trypsin and pronase, but is unaffected by DNase and RNase. The complex is excluded from G-200 as well as P-300 gel beds. By sucrose density gradient centrifugation two macromolecular components were found associated with radioactivity. The largest component had a sedimentation coefficient of 9.3 S and probably corresponds to the macromolecular complex demonstrated by gel filtration, whereas the smaller component had a sedimentation coefficient of 4.5 S and might represent an association of steroids with serum albumin.


1979 ◽  
Vol 181 (1) ◽  
pp. 201-213 ◽  
Author(s):  
M E Birnbaumer ◽  
W T Schrader ◽  
B W O'Malley

Chick oviduct progesterone-receptor proteins were treated in cytosol with the reversible cross-linking reagent methyl 4-mercaptobutyrimidate. The product of the reaction was a 7S complex that could be detected and recovered after sucrose-density-gradient centrifugation in 0.3M-KCl. The extent of the reaction was dependent on the concentration of methyl 4-mercaptobutyrimidate and independent of the presence of bound hormone, since unlabelled receptors could also be cross-linked. The cross-linking reaction required conditions in which the cytosol 6S complex was preserved. A Stokes radius of 7.3 nm was determined by gel filtration in Agarose A-1.5 m in 0.3 M-KCl. The sedimentation coefficient, which was also determined in 0.3 M-KCl, allowed us to calculate a mol. wt. of 228,000. We were also able to cross-link partially purified receptor forms isolated by using an Agarose A-15 m column. On reduction with beta-mercaptoethanol the complex broke down to 4S monomers that were identified by DEAE-cellulose and phosphocellulose chromatography, adsorption on DNA-cellulose and gel filtration in an Agarose A-1.5 m column. In most cases, A and B receptor proteins were released in equivalent amounts, implying that the cross-linked form was an A-B complex.


1976 ◽  
Vol 157 (3) ◽  
pp. 635-641 ◽  
Author(s):  
T Noguchi ◽  
Y Minatogawa ◽  
E Okuno ◽  
R Kido

The organ distribution of rat histidine-pyruvate aminotransferase isoenzymes 1 and 2 was examined by using an isoelectric-focusing technique. Isoenzyme 1 (pI8.0) is present only in the liver and its activity is increased by the injection of glucagon, whereas isoenzyme 2 (pI5.2) is distributed in all tissues (liver, kidney, brain and heart) tested, and is not affected by glucagon injection. Isoenzyme 2 of the liver, kidney, brain and heart was purified by the same procedure and characterized. Isoenzyme 2 preparations from these four tissues were nearly identical in physical and enzymic properties. These properties differed from those previously found for the highly purified isoenzyme 1 preparation of rat liver. Isoenzyme 2 was active with pyruvate but not with 2-oxoglutarate as amino acceptor. Amino donors were effective in the following order of activity: tyrosine greater than histidine greater than phenylalanine greater than kynurenine greater than tryptophan. Very little activity was found with 5-hydroxytryptophan. The apparent Km for histidine was about 0.45 mM. The Km for pyruvate was about 4.5 mM with histidine as amino donor. The amino-transferase activities of isoenzyme 2 towards phenylalanine and tyrosine were inhibited by histidine. The ratio of aminotransferase activities towards these three amino acids was constant through gel filtration, electrophoresis, isoelectric focusing and sucrose-density-gradient centrifugation of the purified isoenzyme 2 preparations. These results suggest that these three activities are properties of the same enzyme protein. Sephadex G-150 gel filtration and sucrose-density-gradient centrifugation yielded mol.wts. of approx. 95000 and 92000 respectively. The pH optimum was between 9.0 and 9.3.


1971 ◽  
Vol 123 (5) ◽  
pp. 967-975 ◽  
Author(s):  
D. Allan ◽  
M. J. Crumpton

The degree of solubilization of pig lymphocyte plasma membrane by sodium deoxycholate was determined at a variety of temperatures and detergent concentrations. Approx. 95% of the membrane protein was soluble in 2% deoxycholate at 23°C. Some of the biological activities of the membrane survived this treatment. The leucine β-naphthylamidase activity was more readily soluble than the 5′-nucleotidase and these enzymes could be separated by extraction with 0.5% deoxycholate at 0°C. Membrane solubilized in 2% deoxycholate at 23°C was fractionated by sucrose-density-gradient centrifugation in 1% deoxycholate. The phospholipid was separated from the protein, which formed a fairly symmetrical peak that sedimented slightly slower than ovalbumin; the leucine naphthylamidase and 5′-nucleotidase activities were resolved from each other and from the main protein peak. Similar separations were achieved by elution from Sephadex G-200 and Sepharose 6B in 1% deoxycholate. The main proteins, however, appeared to possess much higher molecular weights than those indicated by sucrose-density-gradient centrifugation. This disparity suggests that many of the membrane proteins have a rod-like shape, especially since the results of experiments with [14C]deoxycholate revealed that the proteins did not bind significant amounts of deoxycholate. In contrast, 5′-nucleotidase and leucine naphthylamidase appeared to be globular. Polyacrylamide-gel electrophoresis of membrane solubilized in sodium dodecyl sulphate gave a similar distribution of protein to that achieved by sucrose-density-gradient centrifugation. Trace amounts only of polypeptides of molecular weight less than 10000 were detected.


Sign in / Sign up

Export Citation Format

Share Document