The porcupine gene is required for wingless autoregulation in Drosophila

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4037-4044 ◽  
Author(s):  
A.S. Manoukian ◽  
K.B. Yoffe ◽  
E.L. Wilder ◽  
N. Perrimon

The Drosophila segment polarity gene wingless (wg) is required in the regulation of engrailed (en) expression and the determination of cell fates in neighboring cells. This paracrine wg activity also regulates transcription of wg itself, through a positive feedback loop including en activity. In addition, wg has a second, more direct autoregulatory requirement that is distinct from the en-dependent feedback loop. Four gene products, encoded by armadillo (arm), dishevelled (dsh), porcupine (porc) and zeste-white 3 (zw3), have been previously implicated as components of wg paracrine signaling. Here we have used three different assays to assess the requirements of these genes in the more direct wg autoregulatory pathway. While the activities of dsh, zw3 and arm appear to be specific to the paracrine feedback pathway, the more direct autoregulatory pathway requires porc.

1993 ◽  
Vol 123 (2) ◽  
pp. 477-484 ◽  
Author(s):  
P D McCrea ◽  
W M Brieher ◽  
B M Gumbiner

We have obtained evidence that a known intracellular component of the cadherin cell-cell adhesion machinery, beta-catenin, contributes to the development of the body axis in the frog Xenopus laevis. Vertebrate beta-catenin is homologous to the Drosophila segment polarity gene product armadillo, and to vertebrate plakoglobin (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science (Wash. DC). 254: 1359-1361.). Beta-Catenin was found present in all Xenopus embryonic stages examined, and associated with C-cadherin, the major cadherin present in early Xenopus embryos. To test beta-catenin's function, affinity purified Fab fragments were injected into ventral blastomeres of developing four-cell Xenopus embryos. A dramatic phenotype, the duplication of the dorsoanterior embryonic axis, was observed. Furthermore, Fab injections were capable of rescuing dorsal features in UV-ventralized embryos. Similar phenotypes have been observed in misexpression studies of the Wnt and other gene products, suggesting that beta-catenin participates in a signaling pathway which specifies embryonic patterning.


Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 417-429 ◽  
Author(s):  
B. Limbourg-Bouchon ◽  
D. Busson ◽  
C. Lamour-Isnard

Fused (fu) is a segment polarity gene whose product is maternally required in the posterior part of each segment. To define further the role of fused and determine how it interacts with other segmentation genes, we examined the phenotypes obtained by combining fused with mutations of pair rule, homeotic and other segment polarity loci. When it was possible, we also looked at the distribution of corresponding proteins in fused mutant embryos. We observed that fused-naked (fu;nkd) double mutant embryos display a phenotypic suppression of simple mutant phenotypes: both naked cuticle and denticle belts, which would normally have been deleted by one of the two mutants alone, were restored. In fused mutant embryos, engrailed (en) and wingless (wg) expression was normal until germ band extension, but partially and completely disappeared respectively during germ band retraction. In the fu;nkd double mutant embryo, en was expressed as in nkd mutant at germ band extension, but later this expression was restricted and became normal at germ band retraction. On the contrary, wg expression disappeared as in fu simple mutant embryos. We conclude that the requirements for fused, naked and wingless activities for normal segmental patterning are not absolute, and propose mechanisms by which these genes interact to specify anterior and posterior cell fates.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 157-170 ◽  
Author(s):  
A. Martinez Arias ◽  
N.E. Baker ◽  
P.W. Ingham

Segment polarity genes are expressed and required in restricted domains within each metameric unit of the Drosophila embryo. We have used the expression of two segment polarity genes engrailed (en) and wingless (wg) to monitor the effects of segment polarity mutants on the basic metameric pattern. Absence of patched (ptc) or naked (nkd) functions triggers a novel sequence of en and wg patterns. In addition, although wg and en are not expressed on the same cells absence of either one has effects on the expression of the other. These observations, together with an analysis of mutant phenotypes during development, lead us to suggest that positional information is encoded in cell states defined and maintained by the activity of segment polarity gene products.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Craig A. Micchelli ◽  
Inge The ◽  
Erica Selva ◽  
Vladic Mogila ◽  
Norbert Perrimon

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 489-497 ◽  
Author(s):  
N.E. Baker

Wingless (wg) is a segment-polarity gene in Drosophila which is related to the murine proto-oncogene int1. In Drosophila embryos, wg transcription defines part of each parasegment. In situ hybridization shows that wg is also expressed in the imaginal discs which give rise to the adult during metamorphosis. Transcripts are localized in the apical cytoplasm of disc cells, and accumulate in different patterns in dorsal and ventral discs. The wgCX3 mutation produces morphological defect in the adult structures derived from these imaginal discs. The results show that wg is involved in the development of the adult, as well as the embryo, but that the imaginal discs do not express this segment-polarity gene in an identical pattern to the embryonic segments.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1029-1043 ◽  
Author(s):  
M. Peifer ◽  
C. Rauskolb ◽  
M. Williams ◽  
B. Riggleman ◽  
E. Wieschaus

The segment polarity genes of Drosophila were initially defined as genes required for pattern formation within each embryonic segment. Some of these genes also function to establish the pattern of the adult cuticle. We have examined the role of the armadillo (arm) gene in this latter process. We confirmed and extended earlier findings that arm and the segment polarity gene wingless are very similar in their effects on embryonic development. We next discuss the role of arm in pattern formation in the imaginal discs, as determined by using a pupal lethal allele, by analyzing clones of arm mutant tissue in imaginal discs, and by using a transposon carrying arm to produce adults with a reduced level of arm. Together, these experiments established that arm is required for the development of all imaginal discs. The requirement for arm varies along the dorsal-ventral and proximal-distal axes. Cells that require the highest levels of arm are those that express the wingless gene. Further, animals with reduced arm levels have phenotypes that resemble those of weak alleles of wingless. We present a description of the patterns of arm protein accumulation in imaginal discs. Finally, we discuss the implications of these results for the role of arm and wingless in pattern formation.


Sign in / Sign up

Export Citation Format

Share Document